
Real-Time Volumetric Lighting with Volumetric Shadows

Volumetrische Beleuchtung mit volumetrischen Schatten in Echtzeit

Tim Dörries

Master’s Thesis

Advisor: Prof. Dr. Christof Rezk-Salama

Trier, October 7, 2020

Abstract

Physically based solutions for volumetric lighting are a recent addition to many
real-time rendering applications such as games. Most of these solutions do not
account for shadows cast by the participating media themselves. The aim of this
thesis is to detail the implementation of a physically based volumetric lighting tech-
nique with volumetric shadows. The proposed solution is based on the well-known
Volumetric Fog algorithm and supports seamless integration of participating me-
dia volumes, billboard particles, transparent objects and the opaque scene. Focus
is placed on improving the performance of computing in-scattered light. This is
achieved by applying the concept of checkerboard rendering to Volumetric Fog.
Volumetric shadows are realized by adapting Fourier Opacity Mapping to work
with both particles and volumes. It is concluded that the discussed solution fulfills
the initial goals and is able to provide improved visuals on modern hardware, while
still achieving good results with acceptable performance on weaker systems.

Lösungen für volumetrische Beleuchtung mit physikalischem Ansatz zählen zu den
neueren Errungenschaften vieler Echtzeitanwendungen, wie etwa Computerspiele.
Viele dieser Lösungen vernachlässigen Schatten, welche vom Volumen selbst gewor-
fen werden. Diese Arbeit detailliert die Implementierung einer auf physikalischen
Ansätzen basierenden Technik für volumetrische Beleuchtung mit volumetrischen
Schatten. Die vorgeschlagene Lösung baut auf dem bekannten Volumetric Fog
Algorithmus auf und unterstützt die nahtlose Integration von Volumen, herkömm-
lichen Partikelsystemen, transparenten Objekten und der restlichen Szene. Beson-
derer Fokus liegt darauf, die Berechnung des eingestrahlten Lichts zu beschleu-
nigen. Zu diesem Zweck wird das Konzept von Checkerboard Rendering auf Vol-
umetric Fog übertragen. Durch das Anpassen von Fourier Opacity Mapping ist
es zudem möglich, volumetrische Schatten für sowohl Partikelsysteme, als auch
Volumen zu realisieren. Es stellt sich heraus, dass die beschriebene Lösung die
gesetzten Ziele erfüllt und verbesserte visuelle Qualität auf moderner Hardware
erzielt und dennoch gute Ergebnisse mit akzeptabler Leistung auf schwächeren
Systemen erbringt.

Contents

1 Introduction . 1

2 Related Work . 3
2.1 Physical Basis . 3

2.1.1 Volume Properties . 3
2.1.2 Light Propagation in Volumes . 5
2.1.3 Application in Real-Time Rendering . 7

2.2 Volumetric Lighting . 8
2.2.1 Billboard Particles . 8
2.2.2 Screen Space Post-Processing Effect . 8
2.2.3 Ray Marching . 8
2.2.4 Volumetric Fog . 9

2.3 Volumetric Shadows . 11

3 Implementation . 14
3.1 Implementation Framework . 14
3.2 Volumetric Lighting . 14

3.2.1 Participating Media Materials . 14
3.2.2 Initial Implementation . 15
3.2.3 Temporal Filter . 20
3.2.4 Local Lights . 23
3.2.5 Local Participating Media . 25
3.2.6 Ghosting . 27
3.2.7 Leaking . 30
3.2.8 Long Range Volumetric Lighting . 31
3.2.9 Checkerboard Rendering . 34
3.2.10Rendering . 36

3.3 Volumetric Shadows . 39
3.3.1 Ray Marching Voxels . 40
3.3.2 Fourier Opacity Mapping . 41
3.3.3 Local Lights . 47
3.3.4 Directional Lights . 49

3.4 Measurement Method . 51

Contents IV

3.4.1 Test Configurations . 51
3.4.2 Test Systems . 54

4 Results and Discussion . 56
4.1 Volumetric Lighting . 56

4.1.1 Merged V-Buffer and In-Scattering . 56
4.1.2 Checkerboard Rendering . 57
4.1.3 Volumetric Fog . 59
4.1.4 Long Range Volumetric Lighting . 62

4.2 Volumetric Shadows . 63
4.3 A Unified Solution . 64

5 Conclusion . 67
5.1 Conclusion . 67
5.2 Future Work . 67

References . 68

Erklärung der Kandidatin / des Kandidaten . 71

List of Figures

1.1 Amazon Lumberyard Bistro scene [Lum17] lit with the volumetric
lighting solution detailed in this thesis. 2

2.1 Overview of the four different types of photon-particle interactions.
From left to right: Absorption, Emission, Out-Scattering,
In-Scattering . 4

3.1 Overview of the Volumetric Fog shaders and the flow of data. 15
3.2 The V-Buffer shader can be merged with the In-Scattering shader. . 19
3.3 Volumetric Fog undersampling artifacts. The individual slices of

the 3D texture are clearly visible. 21
3.4 After computing in-scattered light, the filtered result from the

previous frame is sampled and combined with the current result. . . . 22
3.5 Temporal filtering successfully removes undersampling artifacts. 23
3.6 Two local lights, a spot light and a point light, interacting with

participating media. 25
3.7 Two local participating media volumes (box-shaped and spherical),

lit by a point light. 27
3.8 A moving light source leaves a trail caused by ghosting. 28
3.9 Bright fog is leaking through the curtain. 31
3.10 Applying a bias to the lookup coordinate fixes most leaking. 32
3.11 The finite range of Volumetric Fog is clearly visible. Scenes with

long view distances might need a fallback for Volumetric Fog. 32
3.12 Ray marched long range volumetric lighting takes over past the

maximum range of Volumetric Fog, fixing the artifact in figure 3.11. 34
3.13 Implementing checkerboard rendering requires the temporal filter

to be moved into its own pass. 35
3.14 Blue noise is more pleasant to the human eye than white noise.

Source: Peters [Pet16]. 36
3.15 Billboard particles, a global participating medium and a local

volume lit by a point light without volumetric shadows. 40
3.16 Two slices of a texture with eight FOM coefficients stored in the

color channels. 42

List of Figures VI

3.17 Erroneous self shadowing of billboard particles caused by ringing. . . 46
3.18 Mapping a point on a sphere to a point in a square with octahedron

mapping. Source: Cigolle et al. [CDE+14], modified. 47
3.19 Billboard particles, a global participating medium and a local

volume lit by a point light with volumetric shadows. 48
3.20 The shadow atlas for local lights is managed with a quadtree

allocator. 49
3.21 Bounding the depth range can fix ringing artifacts. 50
3.22 Volumetric Fog test scene. 52
3.23 Long range volumetric lighting test scene. 52

4.1 Separate vs. merged V-Buffer and In-Scattering timings in
milliseconds at different volume resolutions. 57

4.2 Timings in milliseconds for computing in-scattered light and
performing temporal filtering without and with checkerboard
rendering at a volume resolution of 160x90x64. 58

4.3 Timings in milliseconds without and with checkerboard rendering
at different volume resolutions. 59

4.4 Rendering with a volume resolution of 160x90x64 without
checkerboard rendering. 60

4.5 Rendering with a volume resolution of 160x90x64 with checkerboard
rendering. 60

4.6 Rendering Volumetric Fog at a volume resolution of 160x90x64. 61
4.7 Rendering Volumetric Fog at a volume resolution of 240x135x128. . . 62
4.8 Timings in milliseconds for the complete volumetric lighting

solution without and with volumetric shadows at different volume
resolutions. 65

4.9 Billboard particles seamlessly integrating with a local participating
medium. Both participating media representations cast shadows
onto one another and the scene. 66

List of Tables

2.1 Overview and description of the introduced symbols. 5

3.1 Material parameters of participating media. 15
3.2 V-Buffer Layout . 16
3.3 Tested configurations. 53
3.4 Hardware specification of the high end AMD desktop test system. . . 54
3.5 Hardware specification of the laptop test system. 55

4.1 Separate vs. merged V-Buffer and In-Scattering timings in
milliseconds at a volume resolution of 160x90x64. 56

4.2 Separate vs. merged V-Buffer and In-Scattering timings in
milliseconds at a volume resolution of 240x135x128. 56

4.3 Timings in milliseconds without and with checkerboard rendering
at a volume resolution of 160x90x64. 58

4.4 Timings in milliseconds without and with checkerboard rendering
at a volume resolution of 240x135x128. 58

4.5 Performance timings in milliseconds of all Volumetric Fog passes
at a volume resolution of 160x90x64. 60

4.6 Performance timings in milliseconds of all Volumetric Fog passes
at a volume resolution of 240x135x128. 61

4.7 Performance timings of the long range volumetric lighting test
scene in milliseconds at a volume resolution of 160x90x64. 62

4.8 Timings in milliseconds for generating the FOM textures and
sampling them for volumetric lighting. 63

4.9 Timings in milliseconds for sampling the FOM textures at a volume
resolution of 240x135x128. “Total” includes all other timings from
table 4.8. 64

4.10 Timings in milliseconds for the complete volumetric lighting
solution without and with volumetric shadows at different volume
resolutions. 64

1

Introduction

Traditionally, most real-time rendering applications only considered interactions
between light rays and solid surfaces. However, in reality, light can also interact
with particles in the air, resulting in phenomena such as smoke, fog, clouds, light
shafts/god rays or the sky being blue. Since they participate in the light transport,
volumes of particles are also referred to as participating media. Taking participat-
ing media into account when rendering a scene is known as volumetric lighting.
Disregarding participating media was motivated by the often prohibitive cost of
computing light-particle interactions in real-time. In order to still achieve the ef-
fects caused by participating media, real-time rendering applications like video
games typically used approximations such as pre-rendered skyboxes, screen space
effects or billboard particles. However, recent advances in graphics hardware ca-
pabilities have made different techniques for more accurate volumetric lighting
feasible.
While volumetric lighting effects have become more common in video games in
recent years, most implementations ignore shadows cast by participating media
onto itself and the scene. This type of shadowing is also known as volumetric
shadows. The aim of this thesis is to detail the implementation of a physically
based real-time volumetric lighting effect with volumetric shadows. It should sup-
port directional lights, point lights and spot lights, integrate with both opaque and
transparent scene elements and be performant enough to run reasonably fast even
on older hardware. As there is already a large body of research on atmospheric
effects such as atmospheric scattering and cloud rendering, these topics are outside
of the scope of this thesis. Figure 1.1 shows how the proposed volumetric lighting
solution might be used for a scene in a real-time rendering application.

1 Introduction 2

Fig. 1.1: Amazon Lumberyard Bistro scene [Lum17] lit with the volumetric lighting
solution detailed in this thesis.

2

Related Work

2.1 Physical Basis

In order to understand the terminology and techniques discussed in the following
sections, it is necessary to establish the physical basis of volumetric rendering.
Fong et al. give a thorough introduction to volume rendering [FWKH17]:

2.1.1 Volume Properties

Participating media can be considered as volumes of particles of different sizes
and densities. When a photon travels through such a volume, it may collide with
a particle. Upon collision, the photon is either absorbed or scattered.
In the case of absorption, the energy of the photon is converted into heat or some
other form of internal particle energy [FWKH17]. However, for the purpose of
volumetric rendering, the photon can be considered to have disappeared.
If the photon is not absorbed but instead scattered, it retains all its energy and
simply changes the direction of its path. The new direction is dependent on the
phase function of the medium.
The phase function is the angular distribution of scattered light/radiance and
depends on the angle θ between the initial direction ω and the direction ω

′
after the

scattering event [FWKH17]. Phase functions need to be reciprocal and normalized
over the sphere [FWKH17]. In a way, they are the equivalent of a bidirectional
reflectance distribution function (BRDF) for volumes. Isotropic media have an
equal probability of scattering incoming photons in any direction. This behavior
can be modeled by the phase function in equation 2.1, where x is the position in
the volume and θ the angle between the two directions ω and ω

′
. Note that this

function is constant and thus independent of both parameters.

fp(x, θ) =
1

4π
(2.1)

Participating media with anisotropic scattering behavior require a phase function
that takes θ into account. A popular choice is the Henyey-Greenstein phase func-
tion shown in equation 2.2, where −1 < g < 1 [Hil15][Wro14]. The parameter g

2.1 Physical Basis 4

describes the anisotropy of the phase function. A positive value models forward
scattering, a value of 0 corresponds to isotropic scattering and a negative value
causes backwards scattering. Multiple lobes of the Henyey-Greenstein phase func-
tion can be used to model complex scattering behavior [HG41].

fp(x, θ) =
1

4π

1− g2

(1 + g2 − 2g cos(θ))
3
2

(2.2)

Under certain circumstances, participating media can emit light. Photons are emit-
ted in all directions and behave the same as photons emitted by any other light
source. Figure 2.1 visualizes the four types of photon-particle interactions.

Fig. 2.1: Overview of the four different types of photon-particle interactions. From
left to right: Absorption, Emission, Out-Scattering, In-Scattering

Since it is infeasible to track individual particles and photons for the purpose of
real-time volume rendering, collisions are modeled stochastically. The chance of a
photon collision is defined by a coefficient σ(x), which is the probability density of
collision per unit distance traveled inside the volume [FWKH17]. Going back to
the participating media properties discussed above, they can be parametrized as
follows:

• Absorption is modeled with the coefficient σa(x).

• Scattering is modeled with the coefficient σs(x).

• On account of its simplicity, this work uses the Henyey-Greenstein phase func-
tion. Thus the parametrization is the phase anisotropy parameter g.

• Emission is modeled by a radiance field Le(x).

For the purpose of authoring participating media, it may be desirable to use a
more intuitive parametrization than scattering and absorption coefficients.

Both the scattering and the absorption coefficient model a loss of energy along a
certain path. Since it is often easier to author participating media with a single
parameter controlling the attenuation, both coefficients can be represented by a

2.1 Physical Basis 5

single coefficient σt = σs + σa. This coefficient σt is referred to as extinction (and
is sometimes informally called density or attenuation factor) [FWKH17].
Single scattering albedo α = σs/σt defines how much light is absorbed or scattered
in a medium. A value of 1.0 signifies that every collision acts as a scattering event
and no light is absorbed (such as in clouds), whereas a value of 0.0 models the
opposite case where every collision is an absorption event (e.g. black coal dust).
Single scattering albedo allows to author participating media properties more intu-
itively as it has a similar meaning to the surface albedo in that both are a measure
of overall reflectivity determining the amount of scattered light [FWKH17].

To summarize, absorption and scattering coefficients can alternatively be authored
with single scattering albedo and an extinction coefficient. Both parametrizations
are equivalent and can be converted into one another. It should be noted that light
is a spectrum, which means that participating media may have different absorp-
tion or scattering coefficients for every wavelength. However, in real-time rendering
typically only three wavelengths are considered (red, green, blue). For this reason,
absorption and scattering coefficients are often RGB-triples. Table 2.1 gives an
overview of the symbols introduced so far.

Symbol Description
σa(x) Absorption Coefficient
σs(x) Scattering Coefficient
σt(x) Extinction Coefficient (σs + σa)
α Single Scattering Albedo (σs/σt)
fp(x, θ) Phase Function

Table 2.1: Overview and description of the introduced symbols.

2.1.2 Light Propagation in Volumes

Using the terminology and principles established above, it is now possible to discuss
how light is propagated in volumes.

Radiative Transfer Equation

The radiative transfer equation (RTE) [Cha60] defines the distribution of radiance
in volumes. Focusing on a single light beam L(x, ω) starting at position x with
direction ω, the RTE can be derived by describing its individual components.

The derivative of the beam L(x, ω) in the direction of ω (expressed as (ω · ∇))
is proportional to the radiance at that point. The proportionality factor is the
absorption coefficient σa (see equation 2.3) [FWKH17]. This term models the loss
of energy due to absorption.

2.1 Physical Basis 6

(ω · ∇)L(x, ω) = −σa(x)L(x, ω) (2.3)

Out-scattering describes the loss of energy due to radiance being scattered out of
the radiance beam. Similar to absorption, this loss is also proportional to the radi-
ance at the current position. The proportionality factor is the scattering coefficient
σs. Equation 2.4 shows this term. Note the similarity to equation 2.3, making the
motivation for introducing the extinction coefficient clear.
Out-scattered energy is not lost to the system, only to the current beam. Instead,
it is scattered into other beams as part of the in-scattering term.

(ω · ∇)L(x, ω) = −σs(x)L(x, ω) (2.4)

In-scattering happens when radiance is scattered into the direction of the current
beam, increasing its radiance. The radiance may originate from another beam
where it was out-scattered or it may even come directly from a light source. Since
radiance might be in-scattered from any direction, an integral over the sphere
(expressed by S2) around the position x is required (see equation 2.5). Similar
to equation 2.4, the scattering coefficient σs is used to model the scattering of
incoming radiance.

(ω · ∇)L(x, ω) = σs(x)

∫
S2

fp(x, ω, ω
′
)L(x, ω

′
)dω

′
(2.5)

Emission is modeled with a separate radiance field Le(x) that defines the radiance
added to the radiance field L(x, ω).

(ω · ∇)L(x, ω) = σa(x)Le(x) (2.6)

Putting these terms together and combining the absorption and out-scattering
terms using the previously established extinction coefficient gives the full RTE,
shown in equation 2.7.

(ω · ∇)L(x, ω) = −σt(x)L(x, ω) + σa(x)Le(x) + σs(x)

∫
S2

fp(x, ω, ω
′
)L(x, ω

′
)dω

′

(2.7)

Volume Rendering Equation

For path tracing but also for real-time rendering techniques, there is a more useful
formulation of the RTE: the volume rendering equation (VRE) [KvH84]. While
the RTE uses gradients to describe the flow of radiance in a forward fashion, the
VRE uses integrals to describe where the radiance is coming from. Integrals can
be evaluated with Monte-Carlo methods, making the VRE more suitable for tech-
niques such as path tracing.

2.1 Physical Basis 7

In order to shorten the notation, the in-scattering term is replaced with Ls(x, ω)
as seen in equation 2.8. Note that the scattering coefficient σs(x) is not included
here to make the final equation more clear.

Ls(x, ω) =

∫
S2

fp(x, ω, ω
′
)L(x, ω

′
)dω

′
(2.8)

In addition, the term Ld(dd, ω) is introduced. This is the light entering the ray at
its end point, modeling an opaque surface or another volume. The VRE is then
defined as shown in equation 2.9, where xd = x− dω refers to the end point of the
ray and xt = x− tω and xs = x− sω. Note that with this notation, ω still points
into the direction of the radiance flow.

L(x, ω) =

∫ d

t=0

exp
(
−
∫ t

s=0

σt(xs)ds
)[
σa(x)Le(xt) + σs(x)Ls(xt, ω) + Ld(xd, ω)

]
dt

(2.9)
Replacing the exponential integral term with T (t) as defined in equation 2.10
allows to further shorten the VRE. T (t) is known as the transmittance term and
models the net reduction factor from absorption and out-scattering along a ray
segment bounded by x and xt.

T (t) = exp
(
−
∫ t

s=0

σt(xs)ds
)

(2.10)

Furthermore, since it is not dependent on t, the Ld(xd, ω) term can be moved out
of the integral, giving the final formulation of the RTE (see equation 2.11).

L(x, ω) =

∫ d

t=0

T (t)
[
σa(x)Le(xt) + σs(x)Ls(xt, ω)

]
dt+ T (d)Ld(xd, ω) (2.11)

2.1.3 Application in Real-Time Rendering

Since evaluating the in-scattering integral in equation 2.8 is often too expensive
for real-time rendering, out-scattered light from other light beams is commonly
ignored. Instead, the integral is replaced with a sum over the direct contributions
of all light sources, as shown in equation 2.12 [Hil15]. As a consequence, all out-
scattered light is lost to the system. This restriction is known as single scattering.

LsingleScattering(x, ω) = Σlights
l=0 fp(x, ω, l)V is(x, l)L(x, l) (2.12)

Note the introduction of the V is(x, l) term. This is the visibility function, modeling
shadows cast by opaque objects, as well as the attenuation caused by the trans-
mittance of the path between x and the light source position (see equation 2.13).
For the purpose of this thesis, the latter is also referred to as volumetric shadows.
Volumetric shadows effectively describe the shadows cast by participating media
onto themselves and then the scene.

V is(x, l) = opaqueShadowFactor(x, l) ∗ volumetricShadowFactor(x, l) (2.13)

2.2 Volumetric Lighting 8

2.2 Volumetric Lighting

While volumetric shadows are technically a part of volumetric lighting, this sec-
tion focuses on the related work of rendering participating media itself. Volumetric
shadows are discussed in section 2.3.

2.2.1 Billboard Particles

Billboard particles are a popular choice for rendering participating media such as
smoke. They are implemented by rendering camera facing rectangles with a smoke
texture applied to them. This effect can be improved by applying lighting to the
particles. Jansen et al. demonstrate how lighting can be computed at lower resolu-
tion by evaluating it in the domain shader (tessellation evaluation shader) [JB11].
Sousa et al. render lighting to an atlas texture that is sampled and combined with
the particle texture during particle rendering. The advantage of this approach is
that it avoids the use of tessellation and allows for better upsampling by using a
bicubic filter to sample the lighting atlas [SG16]. Drobot et al. approximate multi-
scattering by blurring the lighting atlas [Dro17b].

2.2.2 Screen Space Post-Processing Effect

Mitchell presents an inexpensive method for approximating the effect of volumet-
ric lighting as a post-processing effect in screen space [Mit08]. The technique is
mainly intended for rendering sun light crepuscular rays. For each pixel, a ray is
marched in the direction of the screen space position of the light source. At each
ray marching iteration, the rendered scene is sampled. All samples belonging to
the sky are weighted by their distance to the light source and summed up. The
final sum is then additively blended with the rendered image. While this approach
is very performant, it suffers from a number of limitations. As it relies on screen
space information, the effect breaks down if the light source is not visible. Addi-
tionally, light shafts are not always properly occluded by on-screen geometry.

2.2.3 Ray Marching

Toth et al. propose a ray marching technique to compute single-scattering in ho-
mogeneous participating media [TU09]. They cast rays from the closest depth in
the scene toward the camera and compute the in-scattered light at each point on
the ray. Lights are shadowed by shadow maps and analytically calculated trans-
mittance towards the light source. In-scattered light is additionally modulated by
transmittance towards the camera. All samples acquired this way are added and
applied to the scene. In order to reduce the cost of ray marching, Toth et al. use in-
terleaved sampling: Each ray in a neighborhood takes samples at different depths,
so that the final result of multiple rays can be combined to give a higher effective

2.2 Volumetric Lighting 9

sample count. Multiple light sources can be supported by repeating this process
for each light and additively applying it to the scene. The primary downside of
this technique is that it is not trivial to apply to transparent objects.

Sousa et al. use ray marching to compute volumetric lighting for their video game
Crysis 3 [SWR13]. Density calculation of participating media is based on the
fog model proposed by Wenzel [Wen06][Wen07]. Their volumetric lighting is then
shadowed by accumulating the shadow contribution along the view ray. This is
similar in spirit to the method proposed by Toth et al. [TU09]. Sousa et al. also
adopt interleaved sampling: They distribute 1024 samples on a 8x8 grid of half
resolution pixels. A gather pass then bilaterally filters and upscales these results.

For the game Lords of the Fallen, Glatzel et al. built a volumetric lighting solution
for many lights [Gla14], loosely based on the work of Toth et al. [TU09]. They
render proxy geometry for the lights to spawn pixel shader invocations which per-
form the ray marching. The ray is constrained to the bounds of the light source,
increasing precision with the same number of samples. They extend this system by
adding support for 2D projector textures, 3D noise textures, IES profiles for light
sources, as well as anisotropic phase functions. Glatzel et al. additionally employ
temporal reprojection to stabilize the results.

The volumetric lighting of the video game Killzone: Shadow Fall presented by Va-
lient et al. [Val14a] [Val14b] is also based on view space ray marching, constrained
to the bounds of each light source and using interleaved sampling. They improve
upon the visuals of the effect by modulating the intensity of ray marching samples
with particles that have been rendered to a 3D texture covering the view frustum
with a quadratic depth distribution. This texture is at 1/8th of the native reso-
lution and has 16 depth slices. Raymarched volumetric lighting is usually difficult
to correctly compose with transparent objects. Valient et al. solve this problem by
creating a 3D texture that can be queried for the amount of volumetric lighting
between a point in the scene and the camera. This texture is then used to properly
blend transparent objects, the opaque scene and volumetric lighting.

2.2.4 Volumetric Fog

Wronski proposes a novel solution for volumetric lighting: Volumetric Fog [Wro14].
This technique is truly volumetric in that it produces a 3D texture fitted to the
view frustum. This texture contains in-scattering and extinction values that can
be used to apply the effect at any point in the scene that is covered by the texture.
Wronski uses 64 slices exponentially distributed over a range of 64 meters. Thus,
one of the advantages of this approach is the fact that Volumetric Fog can be
applied to all types of objects: deferred or forward rendered opaque objects, trans-
parent objects and billboard particles. The volumetric fog texture is generated
by first creating a 3D texture holding the density of the participating media in

2.2 Volumetric Lighting 10

the scene. In-scattered light is computed and stored in another 3D texture. These
computations can be either combined or ran in parallel. A final compute shader
pass ray marches through the intermediate 3D textures and stores accumulated
in-scattering and extinction for every slice along the view ray. The downside of
storing volumetric lighting in a 3D texture is that high volume resolutions are
prohibitively expensive, both in terms of memory and computation. For this rea-
son Wronski uses a resolution of 160x90x64. While the low resolution along the
X/Y-plane is not very noticeable, the small number of slices along the Z-axis is.
One solution to this problem proposed by Wronski is to use temporal reprojection
similar to Temporal Anti-Aliasing (TAA) to temporally filter the 3D texture.

Hillaire builds upon Volumetric Fog and proposes using physically based parame-
ters such as absorption, scattering, Henyey-Greenstein phase function anisotropy
and emission to author participating media [Hil15]. He notes that most of these
parameters can be additively blended. While Wronski’s Volumetric Fog uses a sin-
gle global participating medium, Hillaire voxelizes material parameters of multiple
media into 3D textures, similar in spirit to a G-Buffer. A second pass computes the
in-scattered light at each texel of the 3D texture and a final pass prepares the data
for rendering, similar to Volumetric Fog. Additionally, Hillaire presents a new way
of integrating the lighting with respect to transmittance over the distance between
two samples along the view ray. This leads to improved visuals when participating
media exhibit strong scattering.

Delmont et al. also adapt Volumetric Fog for their game Rise of the Tomb Raider
[DS15]. In addition to temporal filtering, they propose using a 2x2 Bayer matrix
to add dithering along the Z-axis of the volume. In order to filter out the noise
caused by dithering, they apply a small blur to the 3D texture along the X/Y-plane.

Drobot notes that the usual passes of the Volumetric Fog technique (volume ma-
terial voxelization, lighting, integration) are all bandwidth bound. He suggests
merging those passes into a single compute shader, considerably improving perfor-
mance [Dro17b]. Performing the integration step in the same shader as the lighting
necessitates a new algorithm. Drobot leverages wave-level operations, available on
consoles and newer PC graphics APIs, to achieve this.

Lagarde et al. base their volumetric lighting solution on Volumetric Fog, intro-
ducing a new algorithm for voxelizing participating media, which exhibits reduced
aliasing by computing partial coverage of each voxel [LG18]. Additionally they
use Monte Carlo integration methods to evaluate the in-scattering integral of each
voxel. However, the final ray marching pass along the view ray is still done as in the
original technique. Similar to other implementations of Volumetric Fog, Lagarde et
al. use temporal filtering. In order to reduce ghosting caused by view dependency
of anisotropic phase functions, they propose additionally storing lighting results
computed with an isotropic phase function. This second set of data is used for
temporal filtering, such that anisotropy is only introduced for the current frame.

2.3 Volumetric Shadows 11

Instead of using a single bilinear texture sample to apply the effect to the scene,
they propose a biquadratic filter with four bilinear texture samples.

Bauer et al. present their system for volumetric lighting used in the game Red
Dead Redemption 2 [Bau19]. In contrast to the usual temporal filter applied to
the in-scattering texture, they temporally filter the volume material texture and a
special 3D texture holding the sun light shadow. Additionally, they use blue noise
to offset the texture coordinate when sampling the final result texture. TAA is
then used to blur out the noise. This effectively combats aliasing introduced by
undersampling the sun light shadow maps without suffering from ghosting due to
anisotropic phase functions. Their participating media can be authored as three
distinct types that control how their material parameters are blended. They sup-
port additive blending, alpha blending and particles. The first type corresponds to
the way of blending materials as proposed by Hillaire [Hil15]. The second type is
used to place smaller participating media volumes inside of larger volumes. This is
useful for creating different participating media properties for interiors. Particles
are used analogously to billboard particles and are blended last. Clouds and long
range volumetric lighting past the limit of Volumetric Fog are achieved with ray
marching. For performance reasons, local lights and local participating media are
ignored during ray marching. This pass produces a half-resolution image by tem-
porally upsampling ray marched results at quarter-resolution.

Cho et al. also use ray marching for long range volumetric lighting and intro-
duce a novel way of upscaling the result from quarter-resolution to full resolution
[CGK19]: They sort all 16 full resolution depth samples corresponding to a quarter
resolution ray by depth and write out intermediate ray marching results to each
full resolution pixel once its respective depth has been reached.

2.3 Volumetric Shadows

Volumetric shadows are shadows that are cast by a participating medium onto
itself, other participating media and opaque surfaces. Since they are such an im-
portant aspect of realistic volumetric lighting, there is a large body of research
about this topic. A selection of influential works in this area is discussed in this
section. Solutions for volumetric shadows must be able to determine the value of
the transmittance function at any distance from the light source. Most volumet-
ric shadow techniques use some form of shadow mapping, where a transmittance
function is stored per shadow map texel.

Deep Shadow Maps by Lokovic et al. [LV00] is one of the most well known tech-
niques for volumetric shadows. It builds on the classic shadow mapping algorithm
by storing transmittance values for multiple depths. Generating these depth/-
transmittance value pairs involves managing per-pixel linked lists with unbounded

2.3 Volumetric Shadows 12

memory requirements, which is why this technique is mostly used in offline ren-
dering.

An alternative to Deep Shadow Maps are Opacity Shadow Maps (OSM) by Kim et
al. [KN01]. Opacity Shadow Maps are similar to Deep Shadow Maps in that they
also store transmittance values for multiple depths. The key difference is that OSM
store a fixed number of transmittance values for fixed depths. Since the depths are
fixed, they do not need to be stored explicitly. In practice Opacity Shadow Maps
can be implemented using 3D textures or texture arrays. This means that the
memory requirements are not unbounded, making this technique suitable for real-
time rendering. The limitation of OSM is that a large number of texture slices may
be required to achieve good results.

Half-Angle Slicing, introduced by Kniss et al. [KPHE02], is an entirely different
approach to volumetric shadows. This technique involves alternating rendering
slices of a participating medium into a shadow map and into the final image, us-
ing the intermediate shadow map results to shadow each slice of the main view.
Half-Angle Slicing is mostly used in volume rendering applications, where there
are few light sources and no opaque scene geometry [EMK+06]. The downside
of Half-Angle Slicing is that it requires changing the render target for every slice,
which makes this technique unsuitable for high performance real-time applications.

Deep Opacity Maps by [YK08] are an improved version of OSM where the trans-
mittance is stored only for depths past the closest translucent object. This tech-
nique requires fewer slices and therefore less memory to achieve the same quality
as Opacity Shadow Maps. It is suited for rendering objects such as hair, where
finding the depth of the closest translucent object can be trivially achieved using
a depth buffer. However, this cannot be easily done for participating media such
as smoke or clouds.

Salvi et al. introduce Adaptive Volumetric Shadow Maps and a new streaming com-
pression algorithm in order to implement Deep Shadow Maps on a GPU [SVLL10].
Their algorithm uses atomic operations in the pixel shader to maintain the required
per-pixel linked lists. These lists are sorted and compressed using a compression
algorithm that generates a fixed number of nodes with variable error. This is in
contrast to Deep Shadow Maps, where the compression step generates a variable
number of nodes with a fixed upper bound on the error.

Fourier Opacity Mapping (FOM) by Jansen et al. [JB10] is a new approach to
volumetric shadows, where the transmittance function is projected into a fourier
basis using a limited set of coefficients. A FOM is created by additively rendering
particles into a shadow map storing coefficients. These coefficients are generated
by projecting the local transmittance (inverse opacity of the particle) into a fourier
basis. The resulting coefficients can be used to reconstruct the transmittance func-
tion for all depths. The advantages of this technique are that it gives a smooth,

2.3 Volumetric Shadows 13

continuous transmittance function and that it does not require sorting of the parti-
cles. Unlike many other algorithms for volumetric shadows, FOM are prefilterable.
The disadvantage of FOM and other algorithms that use the same principle is that
the resulting transmittance function tends to exhibit ringing and false self shadow-
ing if the covered range is too large or if particles are almost opaque. The reason
for this is that the reconstructed transmittance function is a sum of sine and cosine
waves, with each additional coefficient adding waves of higher frequency. Limiting
the number of coefficients preserves low frequency waves but fails to capture high
frequency detail in the signal.

Another technique of the same class of algorithms as FOM are Extinction Trans-
mittance Maps by Gautron et al. [GDM11]. Instead of using a discrete fourier
transform (DFT), a discrete cosine transform (DCT) is used. This technique builds
on Transmittance Function Mapping, introduced by Delalandre et al. [DGMF11].
In contrast to FOM and Extinction Transmittance Maps, Transmittance Function
Mapping is based on marching through a participating medium to generate the
DCT coefficients. Since particles are not necessarily sorted by their distance along
the ray being ray marched, Transmittance Function Mapping is not trivially ap-
plicable to particles. Transmittance Function Mapping has been used for real-time
visualization of special effects in movies [EPK12] [EPG+12].

While it is not a solution to the general problem of volumetric shadows, Kasyan et
al. [KSS11] and Persson [Per12] propose a simple solution for having particles cast
shadows on opaque objects. They render the opacity of particles with alpha blend-
ing into an 8-bit render target that is looked up similar to a shadow map during
rendering of the main view. In order to avoid back-projection (casting shadows
on objects closer to the light than the particles), they use depth buffering while
rendering the translucent shadow map.

Bavoil et al. present a version of Opacity Shadow Maps which can be used for par-
ticles [BJ13]. They call their solution Particle Shadow Mapping. It involves using
a geometry shader to render particles to different render target layers of a layered
framebuffer. Local particle transmittance is then multiplicatively blended into the
render target. In a next step, a compute shader generates the global transmittance
function by marching through the slices of the texture and multiplicatively accu-
mulating the local transmittance.

Hillare proposes a unified solution for both particles and volumes [Hil15]. Extinc-
tion of particles and volumes is voxelized into three cascaded volume textures cen-
tered around the camera. For each light with volumetric shadows, a small Opacity
Shadow Map is created by ray marching through the voxelized extinction with a
compute shader. Particles are voxelized using atomic operations. Being a version
of Opacity Shadow Maps, this technique exhibits the same limitations as OSM.

3

Implementation

3.1 Implementation Framework

The techniques in this thesis have been implemented in a custom framework using
C++ and the Vulkan 1.2 graphics API. All shaders have been authored in HLSL
and compiled to SPIR-V using the DirectX Shader Compiler. SPIR-V is the byte
code shader format that is consumed by the Vulkan runtime. The framework uses
a clustered forward renderer and includes features such as physically based render-
ing, real-time reflection probes, shadowed point-, spot- and directional lights and
Temporal Anti-Aliasing (TAA).

3.2 Volumetric Lighting

As outlined in section 2.2, current state of the art solutions for volumetric lighting
are based on either ray marching or Volumetric Fog. As Volumetric Fog can be
applied to any object, including transparent objects and billboard particles, it was
chosen as a basis for this thesis. In this section the initial implementation of Volu-
metric Fog is described first. This first version of the effect only supports directional
lights and a single global participating medium. Afterwards, incremental improve-
ments on the basic effect are detailed, finally arriving at the full implementation.
Volumetric shadows are discussed in section 3.3.

3.2.1 Participating Media Materials

Similar in spirit to Hillaire [Hil15], participating media are parametrized by albedo,
extinction, emissive and phase anisotropy. In particular, albedo and emissive are
RGB-tuples, while extinction is a monochromatic value. Extinction could trivially
be expanded to also be an RGB-tuple, however this would consume more memory
and bandwidth, especially with respect to volumetric shadows, where the memory
requirements would be tripled. While most participating media do not emit light,
the emissive parameter can be useful for artists to fake indirect light [Hil15]. phase
anisotropy describes the eccentricity parameter of the Henyey-Greenstein phase
function. Participating media can also be configured to have height dependent
density, an effect known as height fog. In addition, an optional 3D texture can be

3.2 Volumetric Lighting 15

used to vary the density inside the volume. Table 3.1 summarizes these parameters
and their types.

Parameter Name Type
Albedo α float3
Extinction σt float
Phase Anisotropy g float
Emissive float3
Density Texture Texture3DHandle
Height Fog Enabled bool
Height Fog Start Height float
Height Fog Falloff float

Table 3.1: Material parameters of participating media.

3.2.2 Initial Implementation

The initial implementation of the Volumetric Fog technique was closely based on
the work of Wronski [Wro14] and Hillaire [Hil15]. Initially, only directional lights
and a single global participating medium were supported.
The Volumetric Fog algorithm makes use of multiple intermediate 3D textures and
a final result 3D texture. These textures are fitted to the view frustum and cover
a range of 64 meters. The individual slices of the 3D textures use an exponential
distribution along the Z-axis, resulting in a higher resolution close to the camera.
The algorithm can be broken down into three distinct steps. First, the properties
of the participating media are voxelized and stored in one of the frustum-aligned
textures. A second step reads this data and computes the in-scattered light. In a
final step, the result texture is created by marching through the texture generated
by the previous step and accumulating in-scattered light and transmittance for
every texel of the final texture. This process is similar to creating a prefix sum.
These steps are visualized in figure 3.1. Their details are discussed in the following.

Participating Media
ParametersCreate V-Buffer In-Scattered Light

and ExtinctionCreate In-Scattering Buffer Create Result Buffer

Fig. 3.1: Overview of the Volumetric Fog shaders and the flow of data.

V-Buffer

The Volume-Buffer (V-Buffer) is named after the Geometry-Buffer (G-Buffer) used
in deferred shading. Similar to a G-Buffer, which stores material parameters of the
closest surface, it holds the material parameters of the participating media in the

3.2 Volumetric Lighting 16

frustum. In contrast to a G-Buffer, a V-Buffer needs to store values for any point
in space and therefore uses a 3D texture, not a 2D texture. While the original
Volumetric Fog technique only stores volume density, the implementation for this
thesis stores albedo, extinction, emissive and phase anisotropy in a set of two
RGBA16F 3D textures according to the scheme shown in table 3.2.

RGB A
Texture A Albedo Extinction
Texture B Emissive Phase

Table 3.2: V-Buffer Layout

The V-Buffer is filled by dispatching a compute shader such that each thread com-
putes the set of parameter values for one V-Buffer texel and writes them to the
corresponding locations in the two textures. Since the initial implementation sup-
ported only a single global volume, computing the participating media parameters
involves only looking up the parameters of the volume and applying height fog and
an optional density texture. For completeness, this is shown in listing 3.1.

3.2 Volumetric Lighting 17

1 ConstantBuffer<Constants> g Constants ;
2 Texture3D g Textures [TEXTURE ARRAY SIZE] ;
3 SamplerState g LinearSampler ;
4 RWTexture3D<float4> g VBufferA ;
5 RWTexture3D<float4> g VBufferB ;
6
7 f loat volumetricFogGetDensity (GlobalPart ic ipat ingMedium medium ,
8 f loat3 po s i t i o n)
9 {

10 f loat dens i ty = po s i t i o n . y > medium . maxHeight ? 0 .0 : 1 . 0 ;
11 // he ight fog
12 i f (medium . heightFogEnabled != 0 && po s i t i o n . y > medium . he ightFogStart)
13 {
14 f loat h = po s i t i o n . y − medium . he ightFogStart ;
15 dens i ty ∗= exp(−h ∗ medium . he i gh tFogFa l l o f f) ;
16 }
17 // dens i ty t ex ture
18 i f (medium . dens i tyTexture != 0)
19 {
20 f loat3 uv = f r a c (p o s i t i o n ∗ medium . t ex tu r eSca l e + medium . t ex tureB ia s) ;
21 dens i ty ∗= g Textures [medium . dens i tyTexture − 1] .
22 SampleLevel (g LinearSampler , uv , 0 . 0) . x ;
23 }
24 return dens i ty ;
25 }
26
27 [numthreads (4 , 4 , 4)]
28 void main (uint3 threadID : SV DispatchThreadID)
29 {
30 const float3 po s i t i o n = calcWorldSpacePos (threadID) ;
31 f loat dens i ty = volumetr icFogGetDensity (g Constants .medium , po s i t i o n) ;
32 f loat3 s c a t t e r i n g = g Constants .medium . s c a t t e r i n g ∗ dens i ty ;
33 f loat e x t i n c t i o n = g Constants .medium . e x t i n c t i o n ∗ dens i ty ;
34 f loat3 emi s s i v e = g Constants .medium . emi s s i v e ∗ dens i ty ;
35
36 // RGB: albedo , A: e x t i n c t i o n
37 g VBufferA [threadID] = f loat4 (s c a t t e r i n g / ex t in c t i on , e x t i n c t i o n) ;
38 // RGB: emiss ive , A: phase an i so t ropy
39 g VBufferB [threadID] = f loat4 (emiss ive , g Constants .medium . phase) ;
40 }

Listing 3.1: Calculation of the V-Buffer.

In-Scattering Buffer

The In-Scattering Buffer holds the light which reaches each volume texel and is
scattered towards the camera. It is stored in the RGB components of a RGBA16F
3D texture. Additionally, in order to avoid sampling multiple textures in later
passes, extinction is copied from the V-Buffer and stored in the alpha channel.
Calculating in-scattered light involves multiple steps. First, the participating me-
dia parameters of the current texel need to be sampled from the V-Buffer. Then
the in-scattered light needs to be summed up by iterating over all light sources,
computing the portion of the light which reaches the position of the current texel
and then applying a phase function to it. Recalling the definition of the VRE (see
equation 2.11), the incoming light needs to be multiplied by the scattering coeffi-
cient σs to arrive at the light scattered towards the camera. Since albedo is defined
as α = σs/σt, the scattering coefficient can be recovered by multiplying α with the
extinction coefficient σt. The implementation of these steps is shown in listing 3.2.

3.2 Volumetric Lighting 18

1 ConstantBuffer<Constants> g Constants ;
2 RWTexture3D<float4> g ResultImage ;
3 Texture3D<float4> g VBufferA ;
4 Texture3D<float4> g VBufferB ;
5
6 [numthreads (4 , 4 , 4)]
7 void main (uint3 threadID : SV DispatchThreadID)
8 {
9 const float3 texe lCoord = calcTexelCoord (threadID) ;

10 const float3 worldSpacePos = calcWorldSpacePos (texe lCoord) ;
11 const float4 a lbedoExt inc t i on = g VBufferA . Load (threadID) ;
12 const float4 emiss ivePhase = g VBufferB . Load (threadID) ;
13 const float3 V = normal ize (g Constants . camPos − worldSpacePos) ;
14
15 // sum in s c a t t e r e d l i g h t i n g
16 f loat3 l i g h t i n g = emiss ivePhase . rgb ;
17
18 // d i r e c t i o n a l l i g h t s
19 for (uint i = 0 ; i < g Constants . d i r e c t i ona lL ightCount ; ++i)
20 {
21 D i r e c t i ona lL i gh t d i r e c t i o n a l L i g h t = g D i r e c t i o n a lL i gh t s [i] ;
22 l i g h t i n g += d i r e c t i o n a l L i g h t . c o l o r
23 ∗ henyeyGreenste in (V, d i r e c t i o n a l L i g h t . d i r e c t i on , emiss ivePhase .w) ;
24 }
25
26 // shadowed d i r e c t i o n a l l i g h t s
27 for (uint i = 0 ; i < g Constants . d irect ionalLightShadowedCount ; ++i)
28 {
29 D i r e c t i ona lL i gh t d i r e c t i o n a l L i g h t = g Direct iona lL ightsShadowed [i] ;
30 f loat shadow = getShadow (d i r e c t i o na lL i gh t , worldSpacePos) ;
31 l i g h t i n g += d i r e c t i o n a l L i g h t . c o l o r
32 ∗ henyeyGreenste in (V, d i r e c t i o n a l L i g h t . d i r e c t i on , emiss ivePhase .w)
33 ∗ shadow ;
34 }
35
36 const f loat s c a t t e r i n gCo e f f = a lbedoExt inc t i on . rgb ∗ a lbedoExt inc t i on . a ;
37 l i g h t i n g ∗= sc a t t e r i n gCo e f f ;
38
39 g ResultImage [threadID] = f loat4 (l i g h t i n g , s c a t t e r i n gEx t i n c t i o n .w) ;
40 }

Listing 3.2: Calculation of in-scattered light.

As pointed out by Drobot [Dro17b], the V-Buffer does not need to be stored
explicitly. Instead, voxelizing participating media parameters and computing in-
scattered light can be merged into a single shader. This keeps the V-Buffer data in
shader registers and avoids having to write to and read from intermediate V-Buffer
textures. As a result, this optimization saves bandwidth. The downside is that this
merged shader must be able to evaluate all participating media materials, resulting
either in an über-shader or a smaller set of fixed functionality, potentially limiting
artistic freedom. This may be a problem if hand-authoring material shaders for
participating media is desired. For the sake of performance, the restriction to a
limited set of fixed functionality was chosen for this thesis. Figure 3.2 visualizes
how merging both shaders simplifies the pipeline.

Integrated Scattering Buffer

The goal of the Volumetric Fog technique is to produce a 3D texture which can be
used to query the in-scattered light and the transmittance for the ray segment de-
fined by the camera position and any point in the frustum. This 3D texture is called

3.2 Volumetric Lighting 19

 Create In-Scattering Buffer Create Result BufferCreate V-Buffer Create In-Scattering BufferCreate V-Buffer

Fig. 3.2: The V-Buffer shader can be merged with the In-Scattering shader.

the (Integrated) Scattering Buffer. Having computed the In-Scattering Buffer in
the previous pass, the result image can be computed by marching through the
slices of the In-Scattering Buffer. This ray marching process starts at the first slice
at the near plane of the camera. At each step the data from the next slice is read,
accumulating in-scattered light and transmittance at each iteration. At the end of
each iteration, the accumulated results are written to the corresponding location
in the resulting 3D scattering image. For the accumulation step, the in-scattered
light at each slice must be modulated by the transmittance along the ray segment
between the current slice and the camera position before it can be added to the
total in-scattered light along the ray. The transmittance itself must also be up-
dated at every step.

A simple way to do this would be to update the accumulated in-scattering value
by multiplying the in-scattering of the current slice with the accumulated trans-
mittance and then adding it to the accumulated in-scattering. In a second step,
the transmittance would be multiplicatively accumulated. Listing 3.3 demonstrates
this:

1 f loat4 s ca t t e rS tepS imp le (f loat3 accumLight , f loat accumTransmittance ,
2 f loat3 s l i c eL i gh t , f loat s l i c eEx t i n c t i o n , f loat stepLength)
3 {
4 s l i c eEx t i n c t i o n = max(s l i c eEx t i n c t i o n , 1e−5);
5 f loat s l i c eTransmi t tance = exp(− s l i c eEx t i n c t i o n ∗ stepLength) ;
6
7 accumLight += s l i c e L i g h t ∗ accumTransmittance ;
8 accumTransmittance ∗= s l i c eTransmi t tance ;
9

10 return float4 (accumLight , accumTransmittance) ;
11 }

Listing 3.3: Simple accumulation step.

However, Hillaire notes that this is incorrect, as the in-scattered light of the cur-
rent slice also depends on the extinction of the current slice. Given a single light
sample S and extinction sample σt, he proposes to integrate the in-scattered light
analytically with respect to transmittance over the depth interval D corresponding
to a texel in the volume [Hil15]. Equation 3.1 gives the details:

∫ D

0

e−σtxS dx =
S − Se−σtD

σt
(3.1)

Since this approach is more correct, it has been widely adopted in other work and
is also used in the implementation of this thesis. Listing 3.4 shows how the calcu-

3.2 Volumetric Lighting 20

lation of the Integrated Scattering Buffer is implemented.

1 RWTexture3D<float4> g ResultImage ;
2 Texture3D<float4> g InputImage ;
3
4 f loat4 s c a t t e rS t ep (f loat3 accumulatedLight , f loat accumulatedTransmittance ,
5 f loat3 s l i c eL i gh t , f loat s l i c eEx t i n c t i o n , f loat stepLength)
6 {
7 s l i c eEx t i n c t i o n = max(s l i c eEx t i n c t i o n , 1e−5);
8 f loat s l i c eTransmi t tance = exp(− s l i c eEx t i n c t i o n ∗ stepLength) ;
9

10 f loat3 s l i c e L i g h t I n t e g r a l = (− s l i c e L i g h t ∗ s l i c eTransmi t tance
11 + s l i c e L i g h t) ∗ rcp (s l i c eEx t i n c t i o n) ;
12
13 accumulatedLight += s l i c e L i g h t I n t e g r a l ∗ accumulatedTransmittance ;
14 accumulatedTransmittance ∗= s l i c eTransmi t tance ;
15
16 return float4 (accumulatedLight , accumulatedTransmittance) ;
17 }
18
19 [numthreads (8 , 8 , 1)]
20 void main (uint3 threadID : SV DispatchThreadID)
21 {
22 f loat4 accum = f loat4 (0 . 0 , 0 . 0 , 0 . 0 , 1 . 0) ;
23
24 f loat3 texe lCoord = f loat3 (threadID . xy + 0 . 5 , 0 . 0) ;
25 f loat3 prevWorldSpacePos = calcWorldSpacePos (texe lCoord) ;
26
27 for (int z = 0 ; z < VOLUMEDEPTH; ++z)
28 {
29 texe lCoord = f loat3 (threadID . xy + 0 . 5 , z + 1 . 0) ;
30 f loat3 worldSpacePos = calcWorldSpacePos (texe lCoord) ;
31 f loat stepLen = d i s t anc e (prevWorldSpacePos , worldSpacePos) ;
32 prevWorldSpacePos = worldSpacePos ;
33 int4 pos = int4 (threadID . xy , z , 0) ;
34 f loat4 s l i c e = g InputImage . Load (pos) ;
35 accum = sca t t e rS t ep (accum . rgb , accum . a , s l i c e . rgb , s l i c e . a , stepLen) ;
36 g ResultImage [pos . xyz] = accum ;
37 }
38 }

Listing 3.4: Calculation of Integrated Scattering Buffer.

Finally, as demonstrated in listing 3.5, the Scattering Buffer can be easily looked
up during shading and used to apply the effect to the scene.

1 f loat3 applyVolumetricFog (f loat3 sceneColor , f loat3 worldSpacePos ,
2 Texture3D scatter ingTex , SamplerState l i nea rSample r)
3 {
4 f loat3 tc = computeTexCoord (worldSpacePos) ;
5 f loat4 f og = scat t e r ingTex . SampleLevel (l inearSampler , tc , 0 . 0) ;
6 return sceneColor ∗ f og . a + fog . rgb ;
7 }

Listing 3.5: Applying the effect to the scene.

3.2.3 Temporal Filter

The implementation described so far suffers from a major problem. Due to the
very low resolution of the used 3D textures (in particular along the Z-dimension),
the effect is subject to strong undersampling artifacts. This is especially noticeable

3.2 Volumetric Lighting 21

when the shadow maps contain high frequency signals, which is often the case in
practice. Such artifacts are visible in figure 3.3.

Fig. 3.3: Volumetric Fog undersampling artifacts. The individual slices of the 3D
texture are clearly visible.

Wronski mitigates this problem by using prefiltered exponential shadow maps
(ESM) instead of ordinary shadow maps [Wro14]. The prefiltered ESM are gen-
erated by converting regular shadow maps to ESM and then downsampling them
from 1024x1024 to 256x256. Finally, a gaussian blur is applied. The resulting
shadow map has much lower frequencies, resulting in reduced aliasing. The ob-
vious drawback of this approach is the increased memory consumption and the
overhead of prefiltering all required shadow maps.
Instead of filtering the shadow maps, it is also possible to use more samples to cre-
ate the In-Scattering Buffer. Temporal filtering is an inexpensive way of increasing
the effective sample count without actually taking more samples per frame. This
is also the approach chosen by Hillaire [Hil15] and Lagarde et al. [LG18].
Temporal filtering tries to find corresponding texel(s) in the previous already fil-
tered frame for each texel of the current frame. Both values are then used to
compute an exponential moving average (EMA), giving smooth results. An EMA
computes a new filtered result St by linearly interpolating between the previous
filtered result St−1 and the current sample Yt according to some value α with
0 < α < 1. The formula for this is shown in equation 3.2.

St =

{
Y1 t = 1

αYt + (1.0− α)St−1 t > 1
(3.2)

3.2 Volumetric Lighting 22

A small α value results in stronger filtering, making the resulting effect more
robust against undersampling artifacts. If the value is too small, artifacts of the
temporal filtering itself can appear. These artifacts are discussed in more detail in
subsection 3.2.6. Figure 3.4 shows how the temporal filter fits into the Volumetric
Fog algorithm.

Reuse filtered In-Scattering Buffer from previous frame for temporal filter

Frame N-1 Frame N

 Create In-Scattering Buffer Create Result BufferCreate V-Buffer Create In-Scattering BufferCreate V-Buffer Create In-Scattering BufferCreate V-Buffer Create In-Scattering BufferCreate V-Buffer

Fig. 3.4: After computing in-scattered light, the filtered result from the previous
frame is sampled and combined with the current result.

In order to attain different samples each frame, it is necessary to jitter the sample
positions. Otherwise, for a still camera, every frame would contain the same infor-
mation, making temporal filtering pointless. There are a number of different ways
to jitter the sample positions. A good jittering scheme should have consecutive
sample positions that are far away from each other to ensure that each frame adds
new information. Furthermore, the samples should be randomly placed so that
they do not suffer aliasing due to using a regular pattern. The problem of tempo-
rally filtering the In-Scattering Buffer is closely related to Temporal Anti-Aliasing
(TAA), which means that the lessons learned from TAA also apply here. A popular
choice for jittering samples for TAA is the Halton sequence, a low-discrepancy or
quasirandom sequence that fulfills the requirements stated above [Kar14][Xu16].
For a given base, a Halton sequence gives an infinite number of deterministic one-
dimensional values. However, jittering the TAA samples requires two-dimensional
offsets and jittering the In-Scattering Buffer requires three-dimensional offsets. For
TAA, it is common to use a Halton sequence of base 2 for the X-axis offset and
a sequence of base 3 for the Y-axis offset. For best results, the base should be a
prime number [PHJ17]. Extending this to three dimensions can be trivially done
by using another sequence of base 5. C++ code for computing a single value of a
sequence of a certain base is given in listing 3.6.

3.2 Volumetric Lighting 23

1 f loat halton (s i z e t index , s i z e t base)
2 {
3 f loat f = 1 .0 f ;
4 f loat r = 0 .0 f ;
5
6 while (index > 0)
7 {
8 f /= base ;
9 r += f ∗ (index % base) ;

10 index /= base ;
11 }
12
13 return r ;
14 }

Listing 3.6: C++ function to compute a value of a Halton sequence.

The Volumetric Fog implementation of this thesis precomputes 32 three-dimensional
Halton values once at startup and then iterates through them each frame. An EMA
α value of 0.05 gives sufficiently smooth results. Figure 3.5 shows how temporal
filtering can remove undersampling artifacts.

Fig. 3.5: Temporal filtering successfully removes undersampling artifacts.

3.2.4 Local Lights

The initial implementation supports only directional lights. However, in order to
create convincing scenes, it should also be possible to support local lights such as
spot lights and point lights. Evaluating local lights is very similar to directional
lights: Instead of using the light intensity directly, it must first be attenuated ac-
cording to the parameters of the local light. In particular, a distance based falloff
should be applied. In the case of spot lights, the attenuation of the cone should also

3.2 Volumetric Lighting 24

be considered. While area lights can also be considered as local lights, the frame-
work used for this thesis only supports analytical punctual lights. HLSL code for
evaluating a punctual light is given in listing 3.7.

1 f loat3 eva luatePunctua lL ight (uint index , f loat3 worldSpacePos ,
2 f loat3 V, f loat phase)
3 {
4 PunctualLight l i g h t = g Punctua lL ights [index] ;
5
6 const float3 L = normal ize (l i g h t . p o s i t i o n − worldSpacePos) ;
7 const f loat d i s t = d i s t ance (l i g h t . p o s i t i o n − worldSpacePos) ;
8 f loat at t = getDistanceAtt (d i s t , l i g h t) ;
9

10 i f (l i g h t . i sSpotL ight != 0)
11 {
12 at t ∗= getAngleAtt (L , l i g h t) ;
13 }
14
15 return l i g h t . c o l o r ∗ at t ∗ henyeyGreenste in (V, L , phase) ;
16 }

Listing 3.7: Evaluation of a punctual light.

However, the major difference between directional lights and local lights is that
directional lights affect the whole scene while local lights do not. Since there could
be thousands of local lights in a scene, it would be a waste of performance to
iterate over all of them. Instead, an acceleration structure should be used to only
evaluate lights that are likely to have an effect on the current sample point. This
problem is closely related to the problem of evaluating only relevant lights during
surface shading. Fortunately, this is a well researched subject with lots of viable
solutions. Tiled lighting and clustered lighting are popular techniques to solve this
problem [OBA12][And09][Per15]. Tiled lighting divides the screen into small tiles
and computes for each tile the set of lights overlapping that tile. When shading a
pixel, only the lights of the corresponding tile are evaluated. This technique works
for both forward and deferred shading but is especially suitable for deferred shad-
ing when the set of overlapping lights can be limited to lights that are actually
intersecting the closest surface. Otherwise, a potentially large number of lights
that do not intersect the (opaque) geometry will be evaluated. The downside of
this approach is that the tiled lighting acceleration structure cannot be reused for
forward rendered objects such as transparent meshes.
Clustered lighting extends the concept of tiled lighting to three dimensions and de-
termines the set of lights overlapping a certain depth range of a two-dimensional
tile. The advantage of this approach is that it does not require a depth buffer
to improve the culling accuracy, which also means that the resulting acceleration
structure can be used for both deferred and forward shaded objects. The downside
of clustered lighting compared to tiled lighting is that it requires more memory
and potentially more computational power to cull lights against clusters. For this
reason, the screen space size of clusters is often larger than that of the tiles used
in tiled lighting. As a consequence, clusters are likely to overlap with more lights,
decreasing the effectiveness of culling. Note that clustered lighting can still be
preferable to tiled lighting, especially for applications that cannot rely on a depth

3.2 Volumetric Lighting 25

buffer to improve culling.
Since the Volumetric Fog algorithm needs to evaluate local lights in a three-
dimensional grid fitted to the camera frustum, clustered lighting seems like an
optimal solution.
Drobot presents a novel solution for clustered lighting [Dro17a]: He assigns lights
to 2D screen space tiles similar to tiled lighting. This is done with hardware ras-
terization of light proxy geometry and atomic operations. In addition, all lights
are sorted by their view space depth on the CPU. The view space Z-axis is then
split into equal-sized buckets, each holding the minimum and maximum index of
the sorted lights overlapping the depth range of the bucket. During shading, the
lights overlapping the pixel’s 2D tile are looked up. This set of lights is then further
reduced by only considering lights overlapping the current depth bucket.
This hybrid tiled/clustered lighting algorithm was already present in the imple-
mentation framework of this thesis and is used for shading geometry with lights
and reflection probes. As such it can be easily reused for supporting volumetric
lighting for local lights: Looking up relevant lights for a sample in the In-Scattering
Buffer is done by determining the corresponding screen space tile and depth bin.
Figure 3.6 shows two local lights, a spot light and a point light.

Fig. 3.6: Two local lights, a spot light and a point light, interacting with partici-
pating media.

3.2.5 Local Participating Media

In addition to unbounded, global participating media, it is desirable to also sup-
port local, bounded media. Such local media could be used to create a smoky bar

3.2 Volumetric Lighting 26

or a sauna full of steam. The participating media would then be limited to the
interior of such a room. The local participating media implemented for this thesis
are bounded by either a box or an ellipsoid. The bounding shape can be trans-
lated, rotated and scaled to fit a given scene. Except for the bounding volume, they
expose the exact same set of parameters as global media, making the authoring
process consistent.
In order to speed up local media evaluation, the same clustered lighting algorithm
that is used for lights is also used for local participating media. The proxy geom-
etry is either spherical or box-shaped, depending on the shape of the bounding
volume.
Since the clustered lighting algorithm culls conservatively and because the proxy
geometry is also slightly larger than the actual bounding volume, each volumetric
lighting sample must be tested against the bounding volume of every local medium
before the medium parameters can be evaluated. This is done by storing a trans-
formation matrix for every local participating media that transforms from world
space to bounding volume space. In this space the bounding volume is at the ori-
gin, is axis-aligned and has an extent of 1.0 in all directions. This makes it easy to
test a point in world space against the volume: First the point is transformed into
local space. If the bounding volume is spherical, the distance of the transformed
point to origin of the coordinate system must be less than or equal to 1.0. If the
bounding volume is a box, the transformed point must be in the -1.0 to 1.0 interval
on all axes. As an optimization, only the first three rows of the matrix need to be
stored for the transformation. An implementation of such a test is given in listing
3.8.

1 bool i s InsideMedium (LocalPart ic ipat ingMedium medium , f loat3 worldSpacePos)
2 {
3 // trans form point from world space to l o c a l space
4 f loat3 l o ca lPo s ;
5 l o ca lPos . x = dot (medium . worldToLocal0 , f loat4 (worldSpacePos , 1 . 0) ;
6 l o ca lPos . y = dot (medium . worldToLocal1 , f loat4 (worldSpacePos , 1 . 0) ;
7 l o ca lPos . z = dot (medium . worldToLocal2 , f loat4 (worldSpacePos , 1 . 0) ;
8
9 // box−shaped

10 i f (medium . s ph e r i c a l == 0)
11 {
12 return a l l (abs (l o ca lPos) <= 1 . 0) ;
13 }
14 // s ph e r i c a l
15 else
16 {
17 // sq r t (dot (loca lPos , l o ca lPo s)) i s not nece s sa ry
18 // because the sq r t o f va lue s <= 1.0 i s a l s o <= 1.0
19 return dot (loca lPos , l o ca lPo s) <= 1 . 0 ;
20 }
21 }

Listing 3.8: Testing a world space point against a local participating medium
bounding volume.

The parameters of participating media are blended additively except for the phase
anisotropy, where the average of all media at the current sample point is used.
The reasoning behind this is that each additional medium is considered to add

3.2 Volumetric Lighting 27

particles, which linearly increases the particle density. Figure 3.7 shows two local
participating media volumes lit by a point light.

Fig. 3.7: Two local participating media volumes (box-shaped and spherical), lit by
a point light.

3.2.6 Ghosting

Temporal filtering of the In-Scattering Buffer causes an artifact known as ghosting.
Ghosting happens when lights move through the scene or when the camera moves
through a medium with strong phase anisotropy. It manifests itself as visible trails
behind the light source. An instance of ghosting is shown in figure 3.8.
This happens because samples obtained with reprojection are not tested for va-
lidity. The assumption behind temporal reprojection is that only the camera can
move. This assumption is violated as soon as the lights themselves move: A sample
in the current frame is not lit by a light source but the reprojected sample in the
previous frame is. This causes the light to slowly fade out over several frames. In
addition, it is assumed that the light scatters the same in the previous frame as
in the current frame, which is only the case for an isotropic phase function or a
phase anisotropy of 0.0.

A simple way of reducing ghosting is to increase the α value of the exponential
moving average. Increasing this value increases the influence of the current sample
and decreases the influence of previous samples, minimizing ghosting. However,
past a certain value jittering becomes apparent, making this strategy impractical.
Instead of temporally filtering the In-Scattering Buffer, Bauer et al. filter the V-
Buffer and a 3D texture storing the sun shadow. The final result texture is then

3.2 Volumetric Lighting 28

Fig. 3.8: A moving light source leaves a trail caused by ghosting.

sampled with jittered offsets. They rely on TAA to clean up the resulting noise
[Bau19]. While this solution avoids ghosting by not filtering the In-Scattering
Buffer, it only works properly for a single directional light. This is because ev-
ery light would need its own 3D shadow texture, which is impractical for most
real-time applications.

An important observation of Bauer et al. is that TAA is more capable of reducing
ghosting than the temporal filter commonly employed for Volumetric Fog. Unfor-
tunately, TAA alone is not enough to eliminate aliasing and visible jittering caused
by shadow maps containing high frequency signals. In order to avoid the additional
memory requirements of maintaining a shadow 3D texture, the implementation for
this thesis makes a compromise: It still uses temporal filtering of the In-Scattering
Buffer but also uses jittered lookups and TAA to clean up the noise. Since TAA
acts as an additional temporal filter, it is possible to increase the EMA α value of
the temporal filter used on the In-Scattering Buffer. This effectively defers some
of the temporal filtering to TAA. As noted above, increasing α directly decreases
ghosting. With this hybrid approach, it is possible to safely use α values as high as
0.2 without causing visible artifacts in most scenes. While this does not solve the
problem completely, it is a big improvement. Another advantage of this solution is
that it incurs almost no performance degradation: The only additional overhead
lies in having to sample a noise texture to offset the texture coordinate used to look
up the final result texture. One potential downside is that this solution requires
TAA. However, many modern real-time renderers already use TAA. Additionally,
other effects, such as screen space reflections and screen space ambient occlusion
can also profit from TAA in the same way.

3.2 Volumetric Lighting 29

Temporal Anti-Aliasing

Since it is central to the solution described above, the TAA implementation of
this thesis is briefly detailed in the following. It is based on the work of Karis
[Kar14] and Salvi [Sal16]. It uses 16 Halton samples to jitter the projection matrix.
Similar to the solution presented by Karis, it uses a simple reversible tone mapping
operator to tone map all involved color values (see equations 3.3 and 3.4) [Kar14].

T (color) =
color

1 + luma(color)
(3.3)

T−1(color) =
color

1− luma(color)
(3.4)

However, instead of clipping against the color AABB, it uses variance clipping
(VC), introduced by Salvi. VC constructs an improved AABB from the first two
moments of the local color sample distribution [Sal16]. The AABB is centered on
the mean value and has an extent determined by the standard deviation. The ex-
tent can additionally be scaled by a scaling factor γ. A higher γ value increases
temporal stability but may introduce ghosting. Experiments showed that vari-
ance clipping is more successful at reducing noise introduced by using jittered
lookups for the Integrated Scattering Buffer than neighborhood clipping. Listing
3.9 demonstrates how VC can be used to construct the AABB.
In order to reduce numerical diffusion caused by linearly sampling the filtered his-
tory buffer, a bicubic filter is used. Usually such a filter requires 9 texture samples.
However, Jimenez shows that the 4 corner samples have little influence on the final
result and can be ignored, bringing down the cost to 5 texture samples [Jim16].
At the end of the TAA shader, the inverse tone mapping operator (equation 3.4)
is applied to filtered result, giving a linear HDR value.

3.2 Volumetric Lighting 30

1 // cur rentCo lor and h i s t o ryCo lo r are tone mapped with simpleTonemap ()
2 f loat3 var i anceC l ipp ing (f loat2 texCoord , f loat2 t e x e l S i z e ,
3 f loat3 currentColor , f loat3 h i s t o ryCo l o r)
4 {
5 f loat3 neighborhoodMin = currentCo lor ;
6 f loat3 neighborhoodMax = currentCo lo r ;
7
8 // determine f i r s t and second moments o f neighborhood
9 f loat3 m1 = 0 . 0 ;

10 f loat3 m2 = 0 . 0 ;
11 for (int y = 0 ; y < 3 ; ++y)
12 {
13 for (int x = 0 ; x < 3 ; ++x)
14 {
15 f loat2 tc = texCoord + (f loat2 (x , y) − 1 . 0) ∗ t e x e l S i z e ;
16 f loat3 tap ;
17 tap = g InputImage . SampleLevel (g LinearSampler , tc , 0 . 0) . rgb ;
18 tap = simpleTonemap (tap) ;
19
20 m1 += tap ;
21 m2 += tap ∗ tap ;
22 }
23 }
24
25 f loat3 mean = m1 / 9 . 0 ;
26 f loat3 stddev = sq r t (max((m2 / 9 .0 − mean ∗ mean) , 1e−7)) ;
27
28 const f loat wideningFactor = 1 . 0 ; // gamma
29
30 neighborhoodMin = −stddev ∗ wideningFactor + mean ;
31 neighborhoodMax = stddev ∗ wideningFactor + mean ;
32
33 // c l i p h i s t o r y aga in s t cur rent frame neighborhood
34 return clipAABB(h i s to ryCo lor , neighborhoodMin , neighborhoodMax) ;
35 }

Listing 3.9: Using variance clipping and a reversible tone mapping operator to clip
the history color against the current frame neighbborhood.

3.2.7 Leaking

Light leaking is an artifact commonly encountered in certain global illumination
(GI) techniques. It manifests itself as light coming through solid walls and is often
caused by the GI technique not being aware of walls. Volumetric Fog suffers from
a conceptually similar artifact: Fog can leak through thin walls. This happens
because the effect is looked up from a 3D texture using linear interpolation. It is
possible that a lookup interpolates between a texel belonging to the inside of a
dark room and a brightly lit texel outside of the room. Since the algorithm is not
aware of the wall separating those two texels, the bright value is erroneously used
in the interpolation, giving the appearance of bright fog leaking through the wall.
Since the slices in the 3D texture are distributed in such a way that they cover
larger distances as they get further from the camera, leaking also gets worse the
further away a wall is from the camera. Figure 3.9 shows an instance of bright fog
leaking through thin geometry.
A simple solution for this problem is to apply a bias to the texture coordinate
used to look up the volume: The coordinate is moved 1.5 texels closer towards
the camera. In addition, the lookup jitter extent along the Z-axis is halved. These

3.2 Volumetric Lighting 31

Fig. 3.9: Bright fog is leaking through the curtain.

measures solve most instances of leaking at the cost of introducing some error.
For the purpose of this implementation, this trade-off was deemed acceptable. The
result of applying this simple fix is shown in figure 3.10. Leaking can still happen
when the camera is moving forward. Forward motion causes the reprojection in the
temporal filter to sample data from slices that were further away from the camera
in the previous frame. As distant slices cover a larger depth range, this is another
source of leaking.

3.2.8 Long Range Volumetric Lighting

The range of the Volumetric Fog effect is commonly limited to a maximum distance
to the camera of approximately 64 meters. This limitation is necessary because
covering larger distances requires more slices in all involved 3D textures, increasing
both memory consumption and computation time. However, the consequence of
this is that objects further away than the maximum range of the effect do not have
proper in-scattering and transmittance data available. Depending on the scene, this
may or may not pose a problem: In small scenes it might not even be noticeable.
However, for larger scenes such as the one shown in figure 3.11, a solution for long
range volumetric lighting is necessary.
This solution would need to start where the range of the Volumetric Fog ends and
cover the whole distance up to the point where the view ray intersects the scene
(or the camera far plane, if it does not intersect the scene).
In order to meet the performance goal, a few compromises need to be made. Similar
in spirit to Bauer et al. [Bau19], long range volumetric lighting ignores local lights
and local participating media. While it would be possible to support these features
(the hybrid tiled lighting algorithm supports a range of up to 8 km), supporting

3.2 Volumetric Lighting 32

Fig. 3.10: Applying a bias to the lookup coordinate fixes most leaking.

Fig. 3.11: The finite range of Volumetric Fog is clearly visible. Scenes with long
view distances might need a fallback for Volumetric Fog.

3.2 Volumetric Lighting 33

them increases memory bandwidth requirements and register pressure. Given the
observation that the distances that need to be covered by this fallback solution can
vary greatly and that 3D textures are unsuitable for covering very large ranges,
computing a 2D texture with ray marching seems like a suitable approach. Un-
fortunately, since the 2D texture only stores results for a single depth, long range
volumetric lighting is only available for opaque objects. In summary, the fallback
solution only supports directional lights and global participating media and is re-
stricted to opaque objects. These limitations are similar to the work presented by
Bauer et al. [Bau19] and Cho et al. [CGK19].

Since the effect is computed in half resolution and needs a depth buffer sample
per result texel, the full resolution depth buffer needs to be downsampled. Using
linear filtering as is commonly done when downsampling color textures is incorrect
because the depth values are non-linear and the resulting values would correspond
to none of the original full resolution values. A better solution is to pick one of
the 4 full resolution texels corresponding to a single half resolution texel. There
are several strategies on which value to pick. One could always pick the top left
value, pick a different value every frame or pick the minimum or maximum value.
Another option, which is the one used in this implementation is to alternate be-
tween minimum and maximum downsampling in a checkerboard fashion. Simple
HLSL code for this is given in listing 3.10. While each of the listed downsampling
methods has its advantages and disadvantages, min/max checkerboard downsam-
pling seems to produce the most pleasing results for the purpose of long range
volumetric fog.

1 f loat depthCheckerboardDownsample (f loat2 texCoord , uint2 threadID)
2 {
3 f loat4 depths = g DepthImage . GatherRed (g PointSampler , texCoord) ;
4
5 // apply min/max f i l t e r in checkerboard
6 f loat r e s u l t = (((threadID . x + threadID . y) & 1) == 0)
7 ? min (min (depths . x , depths . y) , min (depths . z , depths .w))
8 : max(max(depths . x , depths . y) , max(depths . z , depths .w)) ;
9

10 return r e s u l t ;
11 }

Listing 3.10: Checkerboard downsampling the depth buffer.

Long range volumetric lighting is then implemented with a compute shader com-
puting a 2D texture. Each thread uses 16 steps to ray march a given view ray. As
stated above, the ray starts where the range of the Volumetric Fog effect ends and
ends at the depth given by the depth buffer. Ray marching can be skipped if the
depth buffer sample is within the range covered by the Volumetric Fog effect.
Each ray marching step evaluates the global participating media at the current
sample position and then accumulates all in-scattered directional lights, as well as
an ambient term. At the end of each iteration the in-scattered lighting and extinc-
tion of the current sample is accumulated with the in-scattering and transmittance
of the view ray. This step is essentially the same as the scatterStep() function used

3.2 Volumetric Lighting 34

in the integration shader of the Volumetric Fog effect (see listing 3.4). After all
samples have been processed, the accumulated values represent the in-scattering
and transmittance along the whole ray segment. This result is then stored to a
RGBA16F texture and later used when volumetric lighting is applied to the scene.
In general, 16 samples may be too few to accurately sample the volumetric lighting.
However, increasing the number of samples drastically increases the computation
time. A common solution is to jitter the samples along the ray and apply a bilateral
blur to the resulting texture. In this context, this is known as interleaved sampling
[TU09][SWR13][Gla14][Val14a]. Instead of a bilateral blur, Bauer et al. note that
is also possible to jitter the texture coordinates used to sample the texture and
use TAA to resolve the resulting noise [Bau19]. The same approach is used in the
implementation for this thesis. Figure 3.12 shows the result of using this fallback
solution to fix the range limitation of Volumetric Fog.

Fig. 3.12: Ray marched long range volumetric lighting takes over past the maximum
range of Volumetric Fog, fixing the artifact in figure 3.11.

3.2.9 Checkerboard Rendering

Analyzing the performance of the different steps of Volumetric Fog reveals that the
computation of the In-Scattering Buffer is usually the most expensive step. Since
the number of visible lights and participating media is variable, its performance
is also very scene dependent. These characteristics make it a good candidate for
optimization.

Checkerboard rendering is a technique to reduce the cost of shading in deferred
or forward rendering [El 16][Wih17]. It works by only shading every other pixel in

3.2 Volumetric Lighting 35

a checkerboard fashion. Even frames shade “white” pixels and odd frames shade
“black” pixels. The missing pixels are then filled in with temporal reprojection,
using the (reconstructed) full resolution image of the previous frame. While the
reconstruction step incurs some additional overhead, shading only half of all pixels
is a performance win.

Using checkerboard rendering for Volumetric Fog is a novel approach and one of the
contributions of this thesis. The idea is to only compute every other texel of the In-
Scattering Buffer. In contrast to regular checkerboard rendering, the checkerboard
pattern of every other slice is flipped. Essentially, the pattern has been expanded
to the third dimension. This halves the required computations and the required
bandwidth of sampling shadow maps and loading light data. The missing texels
are then filled in during the temporal filter stage: If a texel was not computed in
the current frame, it is filled in by reprojecting into the previous frame. If repro-
jection fails, its value is obtained by linearly interpolating the 4 neighbor texels in
the same slice (which were all computed in the current frame).
However, one downside of this technique is that temporal filtering can no longer
be done in the same shader which computes the In-Scattering Buffer. The rea-
son for this is that the neighboring texels of a missing texel may be needed. This
necessitates writing out the results of the current frame to memory. Fortunately,
since only half of all texels are computed, only half the memory and bandwidth is
needed to write out the results. Figure 3.13 shows the Volumetric Fog passes when
checkerboard rendering is added.

Reuse filtered In-Scattering Buffer from previous frame for temporal filter

Frame N-1 Frame N

Fill Checkerboard
Holes

& Temporal Filter
 Create In-Scattering Buffer Create Result BufferCreate V-Buffer

Fill Checkerboard
Holes

& Temporal Filter
 Create In-Scattering BufferCreate V-Buffer

Fig. 3.13: Implementing checkerboard rendering requires the temporal filter to be
moved into its own pass.

To summarize, the In-Scattering pass is dispatched for only half of all texels and no
longer does temporal filtering. Instead, the unfiltered results are written out to an
intermediate texture and sampled in a subsequent pass, which performs temporal
filtering and fills in the missing texels.
Listing 3.11 shows how to compute the corresponding texel coordinate of a thread
in the In-Scattering pass.

3.2 Volumetric Lighting 36

1 // j i t t e r i s computed with a 3D Halton sequence
2 // cbCondit ion f l i p s between 1 and 0 every frame
3 f loat3 getTexelCoord (uint3 threadID , f loat3 j i t t e r , bool cbCondit ion)
4 {
5 f loat3 texe lCoord = threadID ;
6 texe lCoord . z ∗= 2 . 0 ;
7 bool i s O f f s e t = (((threadID . x + threadID . y) & 1) == cbCondit ion) ;
8 texe lCoord . z += i sO f f s e t ? 1 .0 : 0 . 0 ;
9 texe lCoord += j i t t e r ;

10 return texe lCoord ;
11 }

Listing 3.11: Computing the texel coordinate with checkerboard rendering.

3.2.10 Rendering

Volumetric Fog and the fallback solution for long range volumetric lighting are
applied to the scene in a full-screen pass after all shading of opaque objects has
been done. While this could be combined with other passes, it was moved into its
own pass to profile the performance impact more easily.

Blue Noise

As discussed in subsection 3.2.6 and 3.2.8, both volumetric lighting result textures
are looked up with jittered offsets. In particular, blue noise is used to obtain the
offsets. Figure 3.14 shows what a blue noise texture looks like compared to ordinary
white noise.

(a) White Noise (b) Blue Noise

Fig. 3.14: Blue noise is more pleasant to the human eye than white noise. Source:
Peters [Pet16].

It is sampled from a 64x64 array texture with 64 layers, where each consecutive
frame samples from a different layer. The noise texture is sampled in such a way

3.2 Volumetric Lighting 37

that the noise tiles over the whole screen. Blue noise is suitable for this application
because it distributes samples uniformly and has weak low-frequency components,
making it look more pleasant to the human eye than other types of noise.
The noise is scaled into the -1.5 to 1.5 range and specifies offsets in texel units.
Listing 3.12 shows how the noise is sampled from the blue noise array texture.

1 f loat4 getNoi se (uint2 texelCoord , uint frame)
2 {
3 // wrap around every 64 frames
4 uint l a y e r = frame & 63 ;
5 // manual wrapping (the image i s 64x64)
6 uint2 coord = texe lCoord & 63 ;
7 f loat4 no i s e = g BlueNoiseImage . Load (uint4 (coord , layer , 0)) ;
8 // trans form from 0 .0 . . 1 . 0 range to −1.5 . . 1 . 5 range
9 no i s e = (no i s e ∗ 2 .0 − 1 . 0) ∗ 1 . 5 ;

10 }

Listing 3.12: Sampling the blue noise array texture.

Long Range Volumetric Lighting

Since long range volumetric lighting is computed at half resolution, it needs to be
upsampled with a bilateral filter to full resolution. Instead of using the closest four
samples to each full resolution pixel, blue noise offsets are used to bilinearly sam-
ple the texture 4 times. Each sample is weighted by its associated downsampled
depth with respect to the depth of the current full resolution pixel. Samples with a
depth difference of up to 10 % are accepted. Samples that have a larger difference
still get a minimal weight to ensure that not all samples are rejected. In order to
reduce the number of texture accesses and to not introduce unnecessary memory
dependencies, a four component blue noise value is sampled once and then reused
for all other texture samples by swizzling the components every iteration. This
upsampling scheme is demonstrated in listing 3.13.

3.2 Volumetric Lighting 38

1 // texCoord i s the UV coord inate o f the f u l l s c r e e n quad/ t r i a n g l e
2 f loat4 getLongRangeVolumetrics (f loat2 texCoord , f loat depth , f loat4 no i s e)
3 {
4 f loat2 t e x e l S i z e ;
5 g RaymarchedVolumetricsImage . GetDimensions (t e x e l S i z e . x , t e x e l S i z e . y) ;
6 t e x e l S i z e = rcp (t e x e l S i z e) ;
7
8 f loat4 r e s u l t = 0 . 0 ;
9 f loat tota lWeight = 0 . 0 ;

10
11 for (int i = 0 ; i < 4 ; ++i)
12 {
13 f loat2 tc = texCoord + no i s e . xy ∗ t e x e l S i z e ;
14
15 // get l i n e a r depth o f sample
16 f loat sampleDepth = g RaymarchedVolumetricDepthImage . SampleLevel (
17 g Samplers [SAMPLER POINT CLAMP] , tc , 0 . 0) . x ;
18 sampleDepth = l inearDepth (sampleDepth) ;
19
20 // samples with in 10% of the cent e r depth are acceptab l e .
21 f loat weight = 1 .0 − (abs (depth − sampleDepth) / (depth ∗ 0 . 1)) ;
22 // ensure a minimum weight so that we get a tota lWeight > 0
23 weight = max(1 e−5, s a tu ra t e (weight)) ;
24
25 r e s u l t += g RaymarchedVolumetricsImage . SampleLevel (
26 g Samplers [SAMPLER LINEAR CLAMP] , tc , 0 . 0) ∗ weight ;
27 tota lWeight += weight ;
28
29 // sw i z z l e no i s e to get a d i f f e r e n t o f f s e t in the next i t e r a t i o n
30 no i s e = no i s e . yzwx ;
31 }
32
33 return r e s u l t ∗ rcp (tota lWeight) ;
34 }

Listing 3.13: Upsampling long range volumetric lighting with jittered offsets.

Volumetric Fog

Volumetric Fog is applied to the opaque scene in the same pass. Unlike long range
volumetric lighting, it does not employ depth based weights, making it less in-
volved. In order to improve the visual quality when sampling from it, the Inte-
grated Scattering Buffer holds in-scattering values that are tone mapped with the
simple tone mapping operator used for TAA (see equation 3.3). This tone mapping
operation needs to be reversed at the end of the shader. Code for sampling the
Volumetric Fog texture is given in listing 3.14.

3.3 Volumetric Shadows 39

1 f loat4 getVolumetricFog (f loat3 volumetricFogTexCoord)
2 {
3 f loat3 imageDims ;
4 g VolumetricFogImage . GetDimensions (imageDims . x , imageDims . y , imageDims . z) ;
5 f loat3 t e x e l S i z e = rcp (imageDims) ;
6
7 f loat4 r e s u l t = 0 . 0 ;
8
9 for (int i = 0 ; i < 4 ; ++i)

10 {
11 f loat3 tc = volumetricFogTexCoord + no i s e . xyz ∗ t e x e l S i z e ;
12 fog += g VolumetricFogImage . SampleLevel (
13 g Samplers [SAMPLER LINEAR CLAMP] , tc , 0 . 0) / 4 . 0 ;
14 no i s e = no i s e . yzwx ;
15 }
16
17 r e s u l t . rgb = inverseSimpleTonemap (r e s u l t . rgb) ;
18 return r e s u l t ;
19 }

Listing 3.14: Sampling the Volumetric Fog texture.

Combining the volumetric lighting contributions of both techniques is trivial.
Transmittance can be combined by simple multiplication. Since long range vol-
umetric lighting is only computed for distances past the limit of Volumetric Fog,
its in-scattering needs to be attenuated by the transmittance sampled from the
Volumetric Fog texture. Afterwards, both in-scattering terms can be added. List-
ing 3.15 demonstrates how to combine both terms and apply them to the scene.

1 f loat4 applyVolumetr icLight ing (f loat3 sceneColor , f loat4 volumetricFog ,
2 f loat4 longRangeFog)
3 {
4 f loat4 vo lumet r i c s ;
5 vo lumet r i c s . rgb = (longRangeFog . rgb ∗ volumetr icFog . a)
6 + volumetr icFog . rgb ;
7 vo lumet r i c s . a = longRangeFog . a ∗ volumetr icFog . a ;
8
9 return sceneColor ∗ vo lumet r i c s . a + vo lumet r i c s . rgb ;

10 }

Listing 3.15: Combining both volumetric lighting terms and applying them to the
scene.

Transparent objects are rendered at a later point and sample the Volumetric Fog
texture directly in their forward pixel shader. Since it only has in-scattering and
transmittance values for a single depth, long range volumetric lighting is omitted
for transparent objects.

3.3 Volumetric Shadows

Techniques for volumetric shadows are commonly split into two categories: volu-
metric shadows cast by particles and volumetric shadows cast by volumes. One of
the goals of the implementation for this thesis is to create a unified solution for both
particles and volumes. As such, a solution for volumetric shadows must support
both kinds of participating media representations. Figure 3.15 shows a scene with
billboard particles, global and local participating media without volumetric shad-

3.3 Volumetric Shadows 40

ows, demonstrating the importance of a solution for unified volumetric shadows.
Since particles may not necessarily be sorted, this requirement makes techniques
that depend on sampling the media in a sorted order less suitable. For the purpose
of this thesis, two techniques have been considered: Opacity Shadow Maps gener-
ated by ray marching through a voxelized extinction volume and Fourier Opacity
Mapping.

Fig. 3.15: Billboard particles, a global participating medium and a local volume
lit by a point light without volumetric shadows.

3.3.1 Ray Marching Voxels

Hillaire et al. solve the problem of a unified volumetric shadow solution with Opac-
ity Shadow Maps [Hil15]. They voxelize the extinction coefficient of their partic-
ipating media volumes into a set of cascading 3D textures centered around the
camera. The extinction coefficient of particles is estimated based on their opac-
ity and an artist-configurable parameter. Since most graphics hardware does not
support atomic operations for data types other than unsigned integers, adding the
extinction coefficient of particles into the extinction cascades requires some addi-
tional work.
The extinction value is mapped to the 0 to 2048 range of a 32 bit unsigned integer
and then atomically added to a separate set of 3D textures of unsigned integer
format. After these secondary texture have been filled with the contributions of
all particles, they are combined with the actual extinction cascades in a separate
pass.
In a next step, OSM are generated for every local light with enabled volumetric

3.3 Volumetric Shadows 41

shadows. Each such light is assigned a 32x32x32 volume out of a larger texture at-
las. OSM are generated by marching through the voxelized extinction and storing
transmittance in the OSM texels. For spot lights this is done in a similar way as
when marching through the In-Scattering Buffer when computing the Integrated
Scattering Buffer for Volumetric Fog. This means that only 32x32 threads are nec-
essary. For point lights, they also use a 32x32x32 texture, but dispatch a thread
for every texel and do not use intermediate results to fill other texels, as is done
for spot lights. Generating OSM for point lights is therefore a bit more expensive.

While this technique supports both participating media volumes and particles and
also exhibits good performance characteristics, it has a number of downsides.
Using a set of cascading 3D textures to voxelize extinction implies discretization:
The voxel grid has (in most cases) a lower resolution than the input signal, lead-
ing to aliasing. Moving participating media can exhibit popping in the volumetric
shadows when they are suddenly voxelized into a voxel they did not cover in the
previous frame. This problem can be mitigated by using higher resolution cascades.
However, doubling the resolution increases memory requirements by a factor of 8,
making this not very scalable.
Furthermore, voxelizing large particles can get expensive. Hillaire et al. use point
and trilinear voxelization. Point voxelization writes the particle extinction coeffi-
cient to the voxel that is closest to the center of the particle. Trilinear voxelization
adds partial contributions to the 8 closest voxels. If a large particle is to be prop-
erly voxelized, its extinction would have to be added to all voxels covered by the
particle, making this approach costly. This gets even more expensive when the
resolution of the voxel grid increases. Another downside of the cascades is that
they limit the effect to a certain radius around the camera. Depending on the
application, this might be an acceptable limitation.
Despite the disadvantages, voxelizing extinction is an interesting solution as it en-
ables other volumetric shadow algorithms that rely on taking samples in a sorted
order to also support particles.
Due to the low resolution of 32x32x32, the OSM cannot encode very detailed
shadow information. While this may be acceptable for the XY-plane, depending on
the radius of the light source, 32 depth slices might not be enough. This can mani-
fest itself as erroneous self-shadowing. Similar to the cascaded extinction volumes,
memory consumption increases at an unfavorable rate with increased resolution.
Another limitation of this technique is that it only supports local lights, but not
directional lights. For directional lights, a much larger OSM would be needed, es-
pecially along the Z-dimension.
On account of these limitations, in particular the low resolution of the OSM and
the discretization caused by voxelization, this approach was not further pursued.

3.3.2 Fourier Opacity Mapping

Fourier Opacity Mapping (FOM), introduced by Jansen et al. [JB10] is a technique
primarily intended for rendering volumetric shadows cast by billboard particles.

3.3 Volumetric Shadows 42

They show how their algorithm can be used to reformulate the extinction function
σt(z) (z is the distance along the ray) as a fourier series. The coefficients of the
fourier series can then be used to reconstruct the value of the transmittance func-
tion for a given distance to the light source. With an infinite number of coefficients,
the original signal can be reconstructed precisely. However, since this is not feasi-
ble, the number of coefficients needs to be limited. Fortunately, the transmittance
function of participating media is often very smooth, allowing a small number of
coefficients to still give a satisfying approximation. Jansen et al. note that 8 coeffi-
cients are a good choice (see [JB10] for a quality comparison of different coefficient
counts).
The coefficients are actually pairs of coefficients. Each pair k is computed by iter-
ating over all (billboard particle) samples i and accumulating their opacity αi and
depth di values as shown in equations 3.5 and 3.6.

ak = −2
∑
i

ln(1− αi)cos(2πkdi) (3.5)

bk = −2
∑
i

ln(1− αi)sin(2πkdi) (3.6)

In practice, these coefficients are stored in fourier opacity maps, a set of textures
with four coefficients each. These textures are used in a similar way as regular
shadow maps: In a first step, the textures are cleared to zero. Afterwards, bill-
board particles are rendered into them as if rendering to a shadow map. Finally,
the textures can be looked up during scene rendering to reconstruct the transmit-
tance at a given depth. An example of such a set of textures is shown in figure 3.16.

(a) The first set of four coefficients. (b) The second set of four coefficients.

Fig. 3.16: Two slices of a texture with eight FOM coefficients stored in the color
channels.

3.3 Volumetric Shadows 43

Using the multiple render targets feature of modern graphics hardware, all fourier
opacity maps can be rendered to at once. In the pixel shader, equations 3.7 and
3.8 are evaluated to compute the contribution to each coefficient pair. The results
are then written to the texture with additive blending.

δai,k = −2ln(1− αi)cos(2πkdi) (3.7)

δbi,k = −2ln(1− αi)sin(2πkdi) (3.8)

Since equations 3.5 and 3.6 do not rely on a particular order of the samples i,
particles can be rendered in any order to the fourier opacity maps. A translation
of equations 3.7 and 3.8 to HLSL is given in listing 3.16. It assumes that depth is
a linear value between 0.0 and 1.0 specifying the distance of the current sample
from the light source. Transmittance is equivalent to 1−αi. As proposed by Jansen
et al., the recurrence relations shown in equations 3.9 and 3.10 are used to only
calculate sin() and cos() once. Note that the b coefficient of the first set is always
zero, so in practice, one channel of the fourier opacity map is unused.

sin((n+ 1)θ) = sin(nθ)cos(θ) + cos(nθ)sin(θ) (3.9)

cos((n+ 1)θ) = cos(nθ)cos(θ)− sin(nθ)sin(θ) (3.10)

3.3 Volumetric Shadows 44

1 void four ierOpacityAccumulate (f loat depth , f loat transmittance ,
2 inout float4 r e su l t 0 , inout float4 r e s u l t 1)
3 {
4 transmit tance = max(transmittance , 1e−5);
5 const f loat depthTwoPi = depth ∗ 2 .0 ∗ PI ;
6
7 const f loat lnTransmittance = −2.0 ∗ l og (t ransmit tance) ;
8
9 // a = −2 ∗ l og (t ransmit tance) ∗ cos (2 ∗ PI ∗ k ∗ depth)

10 // b = −2 ∗ l og (t ransmit tance) ∗ s i n (2 ∗ PI ∗ k ∗ depth)
11
12 // cos (0 . 0) == 1 .0
13 r e s u l t 0 . r += lnTransmittance ; // ∗ cos (depthTwoPi ∗ 0 . 0) ;
14
15 // s i n (0 . 0) == 0 .0
16 // r e s u l t 0 . g += lnTransmittance ∗ s i n (depthTwoPi ∗ 0 . 0) ;
17
18 f loat s ine , c o s i n e ;
19 s i n c o s (depthTwoPi , s ine , c o s i n e) ;
20 r e s u l t 0 . b += lnTransmittance ∗ co s i n e ;
21 r e s u l t 0 . a += lnTransmittance ∗ s i n e ;
22
23 const f loat s i n e2 = s i n e ∗ co s i n e + co s i n e ∗ s i n e ;
24 const f loat co s ine2 = co s i n e ∗ co s i n e − s i n e ∗ s i n e ;
25 r e s u l t 1 . r += lnTransmittance ∗ co s ine2 ;
26 r e s u l t 1 . g += lnTransmittance ∗ s i n e2 ;
27
28 const f loat s i n e3 = s ine2 ∗ co s i n e + cos ine2 ∗ s i n e ;
29 const f loat co s ine3 = cos ine2 ∗ co s i n e − s i n e2 ∗ s i n e ;
30 r e s u l t 1 . b += lnTransmittance ∗ co s ine3 ;
31 r e s u l t 1 . a += lnTransmittance ∗ s i n e3 ;
32 }

Listing 3.16: Accumulating a depth-transmittance sample with the FOM coeffi-
cients.

During scene rendering, the fourier opacity maps can be looked up to calculate
the volumetric shadow term. Equation 3.11 shows how the coefficients are used to
compute an approximation to the integral of the extinction function along the ray
starting at the light source and ending at distance d.∫ d

0

σ(z)tdz ≈
a0
2
d+

n∑
k=1

ak
2πk

sin(2πkd) +
n∑
k=1

bk
2πk

(1− cos(2πkd)) (3.11)

Beer’s law then gives the transmittance at distance d (see equation 3.12), which
can be used as the volumetric shadow term.

T (d) = exp(−
∫ d

0

σ(z)tdz) (3.12)

Listing 3.17 demonstrates how to use equations 3.11 and 3.12 to compute the
transmittance for a set of coefficients and a given depth. Note that the recurrence
relations from equations 3.9 and 3.10 are used here as well. An important detail of
this code is that saturate() is called on the result. As the transmittance function is
always in the range of 0.0 to 1.0, this call is necessary to avoid values outside this
range. Such values can arise as a consequence of ringing, an inherent artifact of
FOM. Ringing manifests itself as fluctuations in the reconstructed signal and hap-

3.3 Volumetric Shadows 45

pens when insufficient coefficients are used to encode a signal with high frequencies.

1 f loat four ierOpac i tyGetTransmittance (f loat depth , f loat4 fom0 , f loat4 fom1)
2 {
3 f loat lnTransmittance = fom0 . r ∗ 0 .5 ∗ depth ;
4
5 f loat s ine , c o s i n e ;
6 s i n c o s (depth ∗ 2 .0 ∗ PI , s ine , c o s i n e) ;
7 lnTransmittance += fom0 . b / (2 . 0 ∗ PI ∗ 1 . 0) ∗ s i n e ;
8 lnTransmittance += fom0 . a / (2 . 0 ∗ PI ∗ 1 . 0) ∗ (1 . 0 − co s i n e) ;
9

10 const f loat s i n e2 = s i n e ∗ co s i n e + co s i n e ∗ s i n e ;
11 const f loat co s ine2 = co s i n e ∗ co s i n e − s i n e ∗ s i n e ;
12 lnTransmittance += fom1 . r / (2 . 0 ∗ PI ∗ 2 . 0) ∗ s i n e2 ;
13 lnTransmittance += fom1 . g / (2 . 0 ∗ PI ∗ 2 . 0) ∗ (1 . 0 − co s ine2) ;
14
15 const f loat s i n e3 = s ine2 ∗ co s i n e + cos ine2 ∗ s i n e ;
16 const f loat co s ine3 = cos ine2 ∗ co s i n e − s i n e2 ∗ s i n e ;
17 lnTransmittance += fom1 . b / (2 . 0 ∗ PI ∗ 3 . 0) ∗ s i n e3 ;
18 lnTransmittance += fom1 . a / (2 . 0 ∗ PI ∗ 3 . 0) ∗ (1 . 0 − co s ine3) ;
19
20 return s a tu ra t e (exp(− lnTransmittance) ;
21 }

Listing 3.17: Retrieving transmittance from FOM coefficients.

FOM has some useful properties that make it suitable for the purpose of imple-
menting a unified solution for volumetric shadows. Unlike OSM or other techniques
using piece-wise linear functions, the reconstructed signal is always smooth. Addi-
tionally, FOM are more stable under translation and less sensitive to variations of
depth range [JB10]. While Jansen et al. demonstrate their algorithm with billboard
particles, it can be used for any participating media representation, including vol-
umes.
However, as already hinted at, FOM can suffer from ringing. This artifact can be
mitigated by reducing the depth range, using smaller α values or less particles.
These strategies cause the input signal to have less high frequency components,
which is easier to encode with a limited set of coefficients, resulting in reduced
ringing. Figure 3.17 shows how a too large depth range can result in ringing, visi-
ble as erroneous self shadowing artifacts.

Despite this disadvantage, FOM was chosen as basis for the unified volumetric
shadow solution for this thesis. Deciding factors were the fact that it gives smooth
results, is stable and that it can be used for both volumes and particles without
an intermediate representation (such as the voxelized extinction cascades). As
recommended by Jansen et al. eight coefficients spread over a set of two RGBA16F
textures are used. The following subsections describe how the FOM algorithm is
used to implement volumetric shadows for all supported light sources and medium
representations.

Participating Media Volumes

Since FOM works with depth-transmittance samples and is independent of the
sample order, volumes can be trivially supported by taking multiple samples in-

3.3 Volumetric Shadows 46

Fig. 3.17: Erroneous self shadowing of billboard particles caused by ringing.

side the volume and accumulating them inside the shader. Samples are taken by
intersecting a ray originating from the light source with the bounding geometry
of the volume and marching along the intersecting ray segment. At each sample
position, the extinction value of the medium is determined. Assuming constant
extinction along the current ray interval, the transmittance can be computed from
the extinction sample using Beer’s law and the ray marching step size. The distance
to the light source is implicitly given by the distance parameter t of the ray. At
the end of each iteration, these two values along with the current set of coefficients
are passed into the fourierOpacityAccumulate() function given in listing 3.16. See
listing 3.18 for a short implementation of this ray marching scheme.

1 f loat four ierOpac i tyGetTransmittance (f loat3 o , f loat3 d , f loat t0 ,
2 f loat depthScale , int stepCount , f loat s t epS i ze ,
3 out float4 r e su l t 0 , out float4 r e s u l t 1)
4 {
5 r e s u l t 0 = 0 . 0 ;
6 r e s u l t 1 = 0 . 0 ;
7 for (int i = 0 ; i < stepCount ; ++i)
8 {
9 f loat t = i ∗ s t epS i z e + t0 ;

10 f loat3 rayPos = o + d ∗ t ;
11
12 f loat e x t i n c t i o n = getExt inc t i on (rayPos) ;
13
14 f loat t ransmit tance = exp(− e x t i n c t i o n ∗ s t epS i z e) ;
15 f loat depth = t ∗ depthSca le ;
16 four ierOpac ityAccumulate (depth , transmittance , r e su l t 0 , r e s u l t 1) ;
17 }
18 }

Listing 3.18: Retrieving transmittance from FOM coefficients.

3.3 Volumetric Shadows 47

3.3.3 Local Lights

Local lights include spot lights and point lights. Depending on the light’s size in
screen space a FOM resolution of 128x128 or 256x256 is used. Each light allocates
its FOM out of a larger atlas using a quadtree allocator. In order to avoid a
naive cube map approach with six FOM, point lights use the octahedron mapping
function proposed by Meyer et al. [MSS+10]. This function maps any point on the
unit sphere to a point inside a square. See figure 3.18 for a visualization of this
process.

Fig. 3.18: Mapping a point on a sphere to a point in a square with octahedron
mapping. Source: Cigolle et al. [CDE+14], modified.

Since a normalized direction vector is equivalent to a point on the unit sphere
centered around the origin, octahedron mapping can be used to map any direc-
tion vector to a coordinate inside a square texture. The downside of this approach
is that hardware rasterization can no longer be used to fill the FOM. Instead, a
compute shader marches along the ray segment given by the light source position,
the direction corresponding to each FOM texel and the light source radius. In
each iteration, every local participating media volume is tested against the current
sample position. The extinction value of all overlapping volumes is added and used
to update the coefficients as shown in listing 3.18.
Particles are processed in the same pass: Each thread iterates over all particles
and tests for intersection between the particle and the ray corresponding to the
texel of the current thread. If the ray intersects the particle, the opacity at the
intersection is computed. Opacity (converted to transmittance) and the distance
to the intersection point are then used to update the coefficients with fourierOpac-
ityAccumulate().
Spot lights are computed with the same shaders. The only difference is that the
ray is computed with an inverse (spot light) shadow matrix, not by using the oc-
tahedron mapping function.
In order to make this approach scalable, particles and volumes outside the radius
of the light should be culled on the CPU. Besides the simpler handling of volu-
metric point light shadows, bad hardware rasterizer efficiency at low resolutions is
another motivating factor for choosing compute shaders.
As mentioned in the discussion of FOM, the technique is depth range dependent.

3.3 Volumetric Shadows 48

For local lights it is assumed that the light radius is relatively small and rarely ex-
ceeds distances of 16 meters. If this assumption is violated, ringing and erroneous
self-shadowing artifacts can occur. These artifacts can be fixed by either using
more coefficients are limiting the depth range. Figure 3.19 shows the same scene
as figure 3.15, but with volumetric shadows enabled. The local spherical volume
to the right casts a shadow onto itself, the opaque scene and the global medium.
The billboard particles cast clearly visible shadows onto themselves. Shadows cast
onto the scene and the global medium are present, but not very visible.

Fig. 3.19: Billboard particles, a global participating medium and a local volume
lit by a point light with volumetric shadows.

Quadtree Allocator

The aforementioned quadtree allocator is described in the following. Its purpose
is to manage a quadratic domain of a given size. It tries to satisfy requests for free
areas of different sizes inside this domain, keeping track of which areas are already
in use. A request specifies the desired size of the area and upon success an offset
into the quadratic domain managed by the allocator is returned. Such an allocator
can be used to manage the contents of a texture atlas. In the implementation for
this thesis it is used to manage the shadow map atlas and FOM atlas for local
lights. See figure 3.20 for a visualization of the shadow atlas. Note that it contains
shadow maps of different resolutions.

Internally, the allocator is implemented in terms of a quadtree. The quadtree is a
tree structure where every node evenly divides its area into four child nodes. Each

3.3 Volumetric Shadows 49

Fig. 3.20: The shadow atlas for local lights is managed with a quadtree allocator.

node then stores the size of the largest free area inside its own area. Allocating a
free area is done by recursively traversing the tree starting at the root node. All
child nodes are traversed until a free node of the requested size is found. If the
largest free area inside the area of a given node is too small to satisfy the request,
its children do not need to be traversed, speeding up the process. If a free node
was found, the largest free area value of each node is updated to account for the
now allocated node. This is done while unwinding the stack, ensuring that only
the parent nodes of the allocated node update their value. Freeing a previously
allocated area works in a similar way.
Since shadow maps are commonly square, using a quadtree to manage the free
area is a reasonable choice. In order to limit the maximum recursion depth as well
as the required memory, a lower bound for the requested sizes is used. As shadow
maps smaller than e.g. 64x64 are unpractical and rarely useful, this lower bound
does not affect the practical usefulness of the quadtree allocator.

3.3.4 Directional Lights

Unlike local lights where it can be assumed that the depth range is fairly limited,
directional lights commonly have very large depth ranges. Furthermore, directional
lights need to cover both close and far away scene elements with sufficient FOM
resolution.
The latter problem can be solved in a similar way as with regular shadow maps.
Cascaded shadow maps (CSM) are a solution to this problem. With CSM the
frustum is split into a small set of cascades, where every cascade covers a larger
area than the previous one. Each cascade is then assigned a shadow map of the
same resolution, where cascades close to the camera effectively get a higher shadow
map resolution on account of less space being covered by the shadow map. The
implementation framework for this thesis already supports CSM. Extending this

3.3 Volumetric Shadows 50

system for FOM is trivial: The cascade shadow matrices can simply be reused for
rendering FOM into a separate set of textures. In order to simplify sampling these
textures, they are combined into an array texture. A resolution of 256x256 gives
sufficiently detailed results.
The large depth range poses two problems. Firstly, it makes ray marching the whole
depth range with a sufficiently small step size prohibitively expensive. Secondly,
it violates the assumption of a reasonably small depth range when computing the
FOM coefficients, leading to very visible artifacts. The first problem can be solved
by only ray marching along the ray segment intersecting a participating medium
volume. This is done by rendering proxy geometry for each volume. Box-shaped
volumes use a transformed unit cube mesh and spherical volumes use a simple
sphere mesh. The pixel shader invocations spawned by the proxy geometry then
analytically compute the ray intersections with the volume and do the ray march-
ing.
A solution to the second problem is to reduce the depth range by bounding it to
the minimum and maximum participating media volume distances. A naive but
reasonably fast way of doing this is to render the proxy geometry to a set of two
depth buffers per cascade. One depth buffer stores the closest depth and the other
one the furthest. Sampling both textures gives the tight depth bounds needed to
minimize FOM artifacts. Unfortunately, this means that for four cascades, eight
depth buffers must be prepared. Additional overhead is caused by having to sample
these textures during FOM rendering and during scene rendering, when the FOM
is looked up. Figure 3.21 shows the same scene as figure 3.17, but with a bounded
depth range, successfully removing the ringing artifacts.

Fig. 3.21: Bounding the depth range can fix ringing artifacts.

3.4 Measurement Method 51

A limitation of this approach for rendering FOM for directional lights is that it
is incompatible with global participating media. Global media do not have any
bounds, which means that the depth range cannot be reduced.

3.4 Measurement Method

The aim of the measurement method discussed in the following is to produce pro-
filing data to evaluate the performance of volumetric lighting, volumetric shadows
and the proposed checkerboard rendering technique. Furthermore, the data is used
to confirm that merging the V-Buffer and In-Scattering shaders is indeed a perfor-
mance improvement. Finally, visual quality and applicability of the implemented
solution is discussed in chapter 4.

3.4.1 Test Configurations

The framework used to implement the techniques discussed in this thesis uses a
thin abstraction over the modern low level graphics APIs Vulkan and DirectX 12.
These APIs require the application to explicitly manage synchronization on the
GPU. In order to make this task easier on the programmer, a render graph sys-
tem is used. All resources are registered with the render graph prior to rendering
a frame. The render graph is then informed by the programmer about how each
resource is used in the frame. This gives the render graph global knowledge of the
resource dependencies in a frame and allows it to automatically deduce the re-
quired barriers needed to properly synchronize access to the resources. Executing
all passes is also done by this system, inserting synchronization commands between
passes as required.
Since it orchestrates synchronization and recording of all other GPU commands, it
can also automatically insert GPU timestamps to measure the elapsed time of each
pass. This ensures that all GPU work can be profiled without having to manually
manage timestamps. The measurements obtained this way also include time spent
waiting on barriers automatically issued by the render graph. This is a deliberate
choice, as the barriers are required in any real-world scenario and therefore give
more meaningful measurements of the total cost of each effect.

Collection of measurement data is done automatically to increase reproducibility.
Since Volumetric Fog is independent of the geometry in the scene, only a single
scene is tested. This scene has nine point lights with a large radius. All point
lights cast regular and volumetric shadows. The participating media consist of one
global volume and a local volume in the center of the scene. The local volume in
the center uses a scrolling 3D density texture. This setup was chosen to represent
a typical game scene. Furthermore, up to 512 additional unshadowed point lights
can be added to to test the scalability of the technique. Figure 3.22 shows the test
scene.
While Volumetric Fog is independent of the scene geometry, long range volumetric
lighting is not. In the test scene shown in figure 3.22 the geometry is close enough

3.4 Measurement Method 52

Fig. 3.22: Volumetric Fog test scene.

to be completely inside the range of Volumetric Fog. As a consequence, the ray
marching shader for long range volumetric lighting skips ray marching. In order
to evaluate the performance impact of the fallback technique, a second scene was
set up. This scene features long view distances, ensuring that a ray is marched for
almost all pixels. Figure 3.23 shows what this scene looks like.

Fig. 3.23: Long range volumetric lighting test scene.

3.4 Measurement Method 53

Each scene is profiled with eight different combinations of enabled features, as
shown in table 3.3. Each configuration is profiled for 256 frames. The measure-
ments gathered this way are then averaged and written to a file. Profiling is done
in full screen mode at a resolution of 1920x1080. This process is done for two dif-
ferent Volumetric Fog volume resolutions: 160x90x64 and 240x135x128. The first
resolution corresponds to the one proposed by Wronski when he first introduced
the technique [Wro14]. The latter was chosen to reflect the higher quality results
achievable by modern hardware. A single texel of this resolution corresponds to a
8x8 pixel tile when rendering at 1920x1080.

Config. Merged V-Buffer & In-Scatter Checkerboard Rendering Volumetric Shadows
1 no no no
2 yes no no
3 no yes no
4 yes yes no
5 no no yes
6 yes no yes
7 no yes yes
8 yes yes yes

Table 3.3: Tested configurations.

In configurations where the V-Buffer and In-Scattering calculations are separate,
two RGBA16F 3D textures are used to write out the participating media proper-
ties. Configurations without checkerboard rendering include the temporal filter in
the In-Scattering shader. If checkerboard rendering is enabled, temporal filtering
is done in a separate pass. Enabling volumetric shadows causes the In-Scattering
shader and the regular (opaque scene) lighting shader to sample the relevant FOM
textures. In the following all relevant passes are listed:

• FOM Directional Lights Depth
Generate depth buffers to tighten the depth bounds of directional light FOM.

• FOM Directional Lights
Rasterize particles and volumes into directional light FOM.

• FOM Local Lights
Compute FOM for local lights.

• Volumetric Fog V-Buffer
Voxelize participating media properties into V-Buffer. Runs only if not in
merged configuration.

3.4 Measurement Method 54

• Volumetric Fog In-Scattering
Read V-Buffer, compute in-scattered lighting and apply temporal filter (if not
in checkerboard configuration). Runs only if not in merged configuration.

• Volumetric Fog Merged
Voxelize participating media properties, compute in-scattered lighting and ap-
ply temporal filter (if not in checkerboard configuration). Runs only if in merged
configuration.

• Volumetric Fog Filter
Fill checkerboard holes and apply temporal filter to In-Scattering Buffer. Runs
only if checkerboard rendering is enabled.

• Volumetric Fog Integrate
March through filtered In-Scattering Buffer and compute final result.

• Volumetric Lighting Depth Downsample
Downsample full resolution depth buffer to half resolution with min/max
checkerboard downsampling.

• Long Range Volumetric Lighting Ray Marching
Compute long range volumetric lighting.

• Volumetric Lighting Apply
Apply both Volumetric Fog and the long range volumetric lighting to the scene.

3.4.2 Test Systems

The techniques have been tested on two different test systems: A desktop computer
and a laptop. Table 3.4 shows the hardware specification of the desktop computer
test system.

CPU Intel i5 4690K @3.5 GHz
GPU AMD Radeon RX 5700 XT 8 GB
RAM 16 GB
OS Windows 10

Table 3.4: Hardware specification of the high end AMD desktop test system.

The system shown in table 3.5 is a laptop with a dedicated NVIDIA laptop GPU.

3.4 Measurement Method 55

CPU Intel i5 7300HQ @3.5 GHz
GPU NVIDIA GeForce GTX 1050 2 GB
RAM 8 GB
OS Windows 10

Table 3.5: Hardware specification of the laptop test system.

4

Results and Discussion

4.1 Volumetric Lighting

4.1.1 Merged V-Buffer and In-Scattering

Table 4.1 shows the results of voxelizing participating media properties in a sep-
arate shader compared to doing it in the In-Scattering shader. The table shows
that combining these workloads is a consistent win on both test systems, reducing
the computation time by up to 9.1 %.

RX 5700 XT GTX 1050
Separate 0.453 (0.0275 + 0.426) 2.734 (0.300 + 2.434)
Merged 0.412 2.582
Difference -0.041 (-9.1 %) -0.152 (-5.6 %)

Table 4.1: Separate vs. merged V-Buffer and In-Scattering timings in milliseconds
at a volume resolution of 160x90x64.

As table 4.2 demonstrates, this performance improvement also holds at a consider-
ably higher volume resolution of 240x135x128. Interestingly, the RX 5700 XT test
system seems to profit more from this improvement as the resolution increases,
while the laptop test system does not seem to be affected much by the higher
resolution.

RX 5700 XT GTX 1050
Separate 1.346 (0.147 + 1.199) 10.029 (1.249 + 8.780)
Merged 1.174 9.626
Difference -0.172 (-12.8 %) -0.403 (-4.0 %)

Table 4.2: Separate vs. merged V-Buffer and In-Scattering timings in milliseconds
at a volume resolution of 240x135x128.

These results confirm the findings of Drobot et al. [Dro17b], making this a small
but simple and consistent performance improvement. However, while combining

4.1 Volumetric Lighting 57

voxelization and in-scattering may seem like an obvious optimization, it has a
drawback that may make it unsuitable for some applications. Separating these
tasks allows for more material variety as the V-Buffer can be written to with
different artist authored shaders. This could be done by rendering into the V-
Buffer with classic rasterization. Combining both steps limits the system to fixed
function materials as all participating media need to be voxelized by the same
shader. For the sake of performance, this trade-off was deemed acceptable for this
thesis. Figure 4.1 visualizes the performance impact of this optimization. Note
that the values in both tables as well as figure 4.1 only include the timings of
voxelization and in-scattering and not of the whole effect. Since this performance
improvement is so consistent, all results in the following sections were obtained
with this optimization enabled.

RX 5700 XT
0

0.5

1

M
il
li
se

co
n
d
s

Split 160x90x64
Merged 160x90x64
Split 240x135x128
Merged 240x135x128

(a) Desktop Test System

GTX 1050
0

5

10

M
il
li
se

co
n
d
s

Split 160x90x64
Merged 160x90x64
Split 240x135x128
Merged 240x135x128

(b) Laptop Test System

Fig. 4.1: Separate vs. merged V-Buffer and In-Scattering timings in milliseconds
at different volume resolutions.

4.1.2 Checkerboard Rendering

The results in table 4.3 show that enabling checkerboard rendering gives a consider-
able performance improvement on both systems, despite moving temporal filtering
into its own shader. Especially the weaker laptop test system seem to profit from
checkerboard rendering with a reduction in computation time of up to 27.7 %.
Table 4.4 shows that checkerboard rendering scales very well with increasing vol-
ume resolution on both test systems, with the laptop test system profiting even
more from this optimization. The higher performance improvement on the laptop

4.1 Volumetric Lighting 58

RX 5700 XT GTX 1050
CB Off 0.412 2.582
CB On 0.325 (0.275 + 0.050) 1.866 (1.638 + 0.228)
Difference -0.087 (-20.9 %) -0.716 (-27.7 %)

Table 4.3: Timings in milliseconds without and with checkerboard rendering at a
volume resolution of 160x90x64.

system is most likely due to a worse bandwidth compared to the modern AMD test
system, causing this system to profit more from bandwidth saving optimizations.

RX 5700 XT GTX 1050
CB Off 1.174 9.626
CB On 0.935 (0.711 + 0.224) 6.167 (5.176 + 0.991)
Difference -0.239 (-20.3 %) -3.459 (-35.9 %)

Table 4.4: Timings in milliseconds without and with checkerboard rendering at a
volume resolution of 240x135x128.

Since the performance of filling the holes left by the checkerboard pattern and
performing temporal filtering is independent of the number of lights, checkerboard
rendering scales favorably with increasing light count, as demonstrated in figure
4.2. The data for this figure was obtained by adding additional unshadowed point
lights to the scene.

0 128 256 384 512

0.5

1

1.5

2

Number of additional lights

M
il
li
se

co
n
d
s

Without CB
With CB

(a) Desktop Test System

0 128 256 384 512

5

10

15

Number of additional lights

M
il
li
se

co
n
d
s

Without CB
With CB

(b) Laptop Test System

Fig. 4.2: Timings in milliseconds for computing in-scattered light and performing
temporal filtering without and with checkerboard rendering at a volume resolution
of 160x90x64.

4.1 Volumetric Lighting 59

The performance improvement of checkerboard rendering is visualized in figure
4.3.

RX 5700 XT
0

0.5

1

M
il
li
se

co
n
d
s

Without CB (160x90x64)
With CB (160x90x64)
Without CB (240x135x128)
With CB (240x135x128)

(a) Desktop Test System

GTX 1050
0

5

10

M
il
li
se

co
n
d
s

Without CB (160x90x64)
With CB (160x90x64)
Without CB (240x135x128)
With CB (240x135x128)

(b) Laptop Test System

Fig. 4.3: Timings in milliseconds without and with checkerboard rendering at dif-
ferent volume resolutions.

Figure 4.4 and figure 4.5 show the same scene without and with checkerboard
rendering at a volume resolution of 160x90x64. Visually, both results are indis-
tinguishable. Hypothetical artifacts would be even less visible at higher volume
resolutions.
These results confirm that checkerboard rendering is a valuable optimization, im-
proving performance considerably without introducing visible artifacts.

4.1.3 Volumetric Fog

Table 4.5 shows the timings of all Volumetric Fog passes at a volume resolution of
160x90x64. The algorithm is fast enough to be feasible even on weaker hardware
such as the laptop version of the GTX 1050. Applying the effect to the scene is
relatively expensive, especially on the weaker system. However, this is most likely
related to the memory bandwidth cost of performing a full screen pass and can be
mitigated by applying the effect in the lighting shader.
Figure 4.6 shows the results of rendering Volumetric Fog at a volume resolution
of 160x90x64. Effects such as the floating white light in the right corner are not
affected by the resolution. However, light shafts caused by high frequency shadows
such as the ones cast by the vines around the pillar in the center of the figure
appear a bit blurry. Despite this blurriness, the effect is still stable under motion
due to the temporal filtering.

4.1 Volumetric Lighting 60

Fig. 4.4: Rendering with a volume resolution of 160x90x64 without checkerboard
rendering.

Fig. 4.5: Rendering with a volume resolution of 160x90x64 with checkerboard ren-
dering.

RX 5700 XT GTX 1050
In-Scatter 0.291 1.638
Filter 0.051 0.228
Integrate 0.059 0.169
Apply 0.223 1.003
Total 0.624 3.038

Table 4.5: Performance timings in milliseconds of all Volumetric Fog passes at a
volume resolution of 160x90x64.

4.1 Volumetric Lighting 61

Fig. 4.6: Rendering Volumetric Fog at a volume resolution of 160x90x64.

The timings shown in table 4.6 were obtained at a volume resolution of 240x135x128.
They demonstrate that such a resolution is justifiable on modern hardware such
as the RX 5700 XT. The other test system exhibits unacceptable performance at
this resolution.

RX 5700 XT GTX 1050
In-Scatter 0.752 5.176
Filter 0.224 0.991
Integrate 0.191 0.723
Apply 0.224 1.020
Total 1.391 7.910

Table 4.6: Performance timings in milliseconds of all Volumetric Fog passes at a
volume resolution of 240x135x128.

Figure 4.7 shows the same scene as figure 4.6 but rendered at a resolution of
240x135x128. While the floating white light looks identical to the lower resolution
result, the light shafts in the center of the figure are much more detailed. Although
this effect is still relatively fast at 1.39 ms, the increased resolution does come with
a performance penalty that might not be worth it for some applications, even on
modern hardware. For such applications, rendering Volumetric Fog at a lower
resolution can still achieve good results.
Visually, the implemented Volumetric Fog algorithm delivers satisfying results.
Temporal filtering and TAA manage to hide almost all undersampling artifacts,
while suffering only from slight ghosting. As the comparison between the two
resolutions showed, the effect also gives good results at lower resolutions, especially
in the absence of shadow maps with high frequency detail. Ghosting and leaking

4.1 Volumetric Lighting 62

Fig. 4.7: Rendering Volumetric Fog at a volume resolution of 240x135x128.

remain the primary artifacts of the temporal filtering stage. If all filtering could
be moved to screen space, these artifacts would likely be gone.

4.1.4 Long Range Volumetric Lighting

Table 4.7 shows the performance timings in milliseconds of the long range volumet-
ric lighting test scene. Long range ray marching is too slow for the tested laptop
GTX 1050. This fallback would either need to be disabled on such hardware or
it would need to be further optimized by running at quarter resolution instead of
half resolution. While the performance might be acceptable on the RX 5700 XT
system, it would also profit from an optimized ray marching pass.

RX 5700 XT GTX 1050
In-Scatter 0.088 0.530
Filter 0.051 0.239
Integrate 0.057 0.175
Depth Downsample 0.0001 0.074
Ray Marching 0.316 4.42
Apply 0.193 0.828
Total 0.705 6.266

Table 4.7: Performance timings of the long range volumetric lighting test scene in
milliseconds at a volume resolution of 160x90x64.

As figure 3.23 shows, long range volumetric lighting would likely profit from some
form of volumetric shadowing. Since the directional light volumetric shadows are
limited to the range of the cascaded shadow maps, most of the ray marching
samples are not covered by a FOM cascade. At the cost of some performance,

4.2 Volumetric Shadows 63

volumetric shadows could be realized by performing secondary ray marches towards
the light source.

4.2 Volumetric Shadows

Table 4.8 shows the timings of generating the FOM textures and the overhead
of sampling them in the relevant volumetric lighting passes. Note that all FOM
textures for all lights are recomputed every frame. For the test scene, this includes
nine local lights and one directional light with four cascades. As an optimization,
time slicing could be implemented in the future. That way only a subset of all
active lights would have their FOM textures recomputed each frame.
Rendering the depth buffers for the directional light seems to be equally fast on
both systems. The reason for this is most likely that the workload is so light that
the GPU is undersaturated. Curiously, the laptop system seems to be faster at ren-
dering the directional light FOM textures. On the other hand, computing FOM
textures for local lights is a lot more expensive on that system. On the desktop
test system, both passes are equally as expensive. This might be a hint that the
GTX 1050 would profit from performing local light FOM generation with raster-
ization too. Since local lights take global participating media into account, they
need to march the whole ray, not just a subsection intersecting a local partici-
pating medium. As a consequence, the shader might run longer and require more
bandwidth as all relevant media need to be sampled at each iteration. Since the
RX 5700 XT features a much higher bandwidth than the other GPU, it suffers less
from these additional memory accesses. Sampling the FOM textures in the Vol-
umetric Fog In-Scattering shader incurs only a minor performance degradation.
This is even more so the case for the long range ray marching, where the overhead
is so small that it is effectively non-existent. The reason for this low overhead is
likely that the rays cover such a long distance that only few samples are inside
the range of the directional light shadow cascades. Overall, generating FOM for
directional lights is so inexpensive that it is feasible on all tested systems. FOM for
local lights are more expensive, but still justifiable on modern hardware. It might
be worth it to disregard volumetric shadows cast by global participating media
and also use rasterization to generate local light FOM textures.

RX 5700 XT GTX 1050
Dir. Lights Depth 0.022 0.025
Dir. Lights 0.122 0.047
Local Lights 0.129 2.262
In-Scattering Overhead 0.016 0.128
Ray Marching Overhead 0.000 0.000
Total 0.289 2.462

Table 4.8: Timings in milliseconds for generating the FOM textures and sampling
them for volumetric lighting.

4.3 A Unified Solution 64

Table 4.9 shows the overhead of sampling the FOM textures in the Volumetric Fog
In-Scattering shader at a resolution of 240x135x128. Since the costs of generating
the textures and sampling them in the ray marching shader are independent of
the Volumetric Fog volume resolution, these timings are omitted from the table.
However, they are still included in the sum in the second row.

RX 5700 XT GTX 1050
In-Scattering Overhead 0.040 0.195
Total 0.321 1.637

Table 4.9: Timings in milliseconds for sampling the FOM textures at a volume
resolution of 240x135x128. “Total” includes all other timings from table 4.8.

Table 4.10 shows the performance overhead of enabling volumetric shadows for the
two different resolutions. The same data is visualized in figure 4.8.

RX 5700 XT GTX 1050
Without Volumetric Shadows (Low Res.) 0.607 3.038
With Volumetric Shadows (Low Res.) 0.929 5.663
Without Volumetric Shadows (High Res.) 1.348 7.857
With Volumetric Shadows (High Res.) 1.692 10.673

Table 4.10: Timings in milliseconds for the complete volumetric lighting solution
without and with volumetric shadows at different volume resolutions.

With regards to visual quality, the impact of volumetric shadows is very scene de-
pendent. Scenes like the one depicted in figure 3.19 clearly profit from this feature.
It appears that volumetric shadows are important in the presence of participating
media with high extinction. Furthermore, the quality of billboard particles seems
to always improve with volumetric shadows. As a consequence, scenes like the
Amazon Lumberyard Bistro shown in figure 1.1 could likely disregard volumetric
shadows in favor of some additional performance. This is especially true for weaker
hardware, where such a feature is not as easily justifiable. However, for applica-
tions with high extinction participating media running on modern hardware, the
volumetric shadows technique proposed in this thesis might be a good solution.

4.3 A Unified Solution

The proposed implementation achieves the initial goal of creating a unified solu-
tion for both billboard particles and participating media volumes. Billboard par-
ticles and other transparent objects can sample the Volumetric Fog result texture,
making them integrate correctly with other scene elements. This unification also
extends to volumetric shadows, where FOM manages to represent the transmit-
tance curves of both types of participating media representations. Figure 4.9 shows

4.3 A Unified Solution 65

RX 5700 XT
0

0.5

1

1.5

M
il
li
se

co
n
d
s

Without Vol. Shadows (Low Res.)
With Vol. Shadows (Low Res.)
Without Vol. Shadows (High Res.)
With Vol. Shadows (High Res.)

(a) Desktop Test System

GTX 1050
0

5

10

M
il
li
se

co
n
d
s

Without Vol. Shadows (Low Res.)
With Vol. Shadows (Low Res.)
Without Vol. Shadows (High Res.)
With Vol. Shadows (High Res.)

(b) Laptop Test System

Fig. 4.8: Timings in milliseconds for the complete volumetric lighting solution
without and with volumetric shadows at different volume resolutions.

a scene, where a particle system is placed inside a local participating media vol-
ume. Both the particles and the volume are blended seamlessly and correctly cast
shadows onto themselves, each other and the scene.

4.3 A Unified Solution 66

Fig. 4.9: Billboard particles seamlessly integrating with a local participating
medium. Both participating media representations cast shadows onto one another
and the scene.

5

Conclusion

5.1 Conclusion

This research aimed to detail the implementation of a modern, fast and unified
solution for volumetric lighting with volumetric shadows. Adapting the Fourier
Opacity Mapping algorithm, a technique originally intended for particles, to also
support participating media volumes proved to be a successful strategy for creating
a unified volumetric shadows solution for both participating media representations.
Furthermore, it was shown that applying the concept of checkerboard rendering
to the Volumetric Fog algorithm is a valuable technique for lowering the perfor-
mance impact of volumetric lighting, making this effect viable on a wider range
of hardware. Partially deferring temporal filtering of the volume texture to screen
space by taking advantage of TAA demonstrated to be a promising solution to
combat ghosting artifacts. These advancements helped to achieve the goals set by
this thesis. In conclusion, the approaches detailed in this work allow efficient high
quality volumetric lighting effects on modern GPUs, while still delivering good
results on weaker hardware.

5.2 Future Work

In future work, it would be interesting to research better solutions to the ghosting
artifacts inherent to temporal filtering. In addition, finding a more robust strategy
against leaking artifacts would be a valuable contribution. The implementation
itself could be improved by optimizing long range volumetric lighting and extending
it with atmospheric scattering and cloud rendering.

References

And09. Andersson, Johan: Parallel Graphics in Frostbite – Current & Fu-
ture, 2009.

Bau19. Bauer, Fabian: Creating the Atmospheric World of Red Dead Re-
demption 2: A Complete and Integrated Solution, 2019.

BJ13. Bavoil, Louis and Jon Jansen: Particle Shadows & Cache-Efficient
Post-Processing, 2013.

CDE+14. Cigolle, Zina H., Sam Donow, Daniel Evangelakos, Michael
Mara and Morgan McGuire: Survey of Efficient Representations
for Independent Unit Vectors. Journal of Computer Graphics Tech-
niques (JCGT), 2014, 2014.

CGK19. Cho, Kyungjoon, Kwanghyeon Go and Daeil Kim: Practical
Dynamic Lighting for Large-Scale game Environments, 2019.

Cha60. Chandrasekhar, Subrahmanyan: Radiative Transfer. Dover Pub-
lications, New York, 1960.

DGMF11. Delalandre, Cyril, Pascal Gautron, Jean-Eudes Marvie and
Guillaume François: Transmittance Function Mapping. page 31,
2011.

Dro17a. Drobot, Michal: Improved Culling for Tiled and Clustered Render-
ing, 2017.

Dro17b. Drobot, Michal: Rendering of Call of Duty Infinite Warfare, 2017.
DS15. Delmont, Samuel and Peter Sikachev: Labs R&D: The Render-

ing Techniques of Deus EX: Mankind Divided and Rise of the Tomb
Raider, 2015.

El 16. El Mansouri, Jalal: Rendering ’Rainbow Six — Siege’, 2016.
EMK+06. Engel, Klaus, Hadwiger Markus, Joe M. Kniss, Christof

Rezk-Salama and Daniel Weiskopf: Real-Time Volume Graphics.
A K Peters Ltd, Wellesley, Mass, 2006.

EPG+12. Esteve, Jose, Jamie Portsmouth, Pascal Gautron, Jean-
Colas Prunier, Jean-Eudes Marvie and Cyril Delalandre:
Bringing Transmittance Function Maps to the Screen. DigiPro ’12:
Proceedings of the Digital Production Symposium, 2012:73, 2012.

References 69

EPK12. Esteve, Jose, Jamie Portsmouth and David Koerner: Adaptive
DCT Compression for High Quality Volume Rendering of Dense Media.
2012, 2012.

FWKH17. Fong, Julian, Magnus Wrenninge, Christopher Kulla and
Ralf Habel: Production Volume Rendering. SIGGRAPH 2017
Course, pages 1–79, 2017.

GDM11. Gautron, Pascal, Cyril Delalandre and Jean-Eudes Mar-
vie: Extinction Transmittance Maps. SIGGRAPH Asia 2011 Sketches,
2011:1, 2011.

Gla14. Glatzel, Benjamin: Volumetric Lighting for Many Lights in Lords
of the Fallen, 2014.

HG41. Henyey, L. C. and J. L. Greenstein: Diffuse radiation in the
Galaxy. The Astrophysical Journal, 93:70, 1941.

Hil15. Hillaire, Sebastien: Physically-based & Unified Volumetric Render-
ing, 2015.

JB10. Jansen, Jon and Louis Bavoil: Fourier Opacity Mapping. Proceed-
ings of the 2010 Symposium on Interactive 3D Graphics, page 165,
2010.

JB11. Jansen, Jon and Louis Bavoil: Fast rendering of opacity-mapped
particles using DirectX 11 tessellation and mixed resolutions, 2011.

Jim16. Jimenez, Jorge: Filmic SMAA: Sharp Morphological and Temporal
Antialiasing, 2016.

Kar14. Karis, Brian: High Quality Temporal Supersampling, 2014.
KN01. Kim, Tae-Yong and Ulrich Neumann: Opacity Shadow Maps. Eu-

rographics Rendering Workshop 2001, 2001.
KPHE02. Kniss, Joe, Simon Premoze, Charles Hansen and David Ebert:

Interactive Translucent Volume Rendering and Procedural Modeling.
IEEE Visualization, 2002. VIS 2002., pages 109–116, 2002.

KSS11. Kasyan, Nickolay, Nicolas Schulz and Tiago Sousa: Secrets of
CryENGINE 3 Graphics Technology, 2011.

KvH84. Kajiya, James T. and Brian P. von Herzen: Ray Tracing Volume
Densities. SIGGRAPH Comput. Graph., 18(3):165–174, 1984.

LG18. Lagarde, Sebastien and Evgenii Golubev: The Road Toward
Unified Rendering with Unity’s High Definition Render Pipeline, 2018.

Lum17. Lumberyard, Amazon: Amazon Lumberyard Bistro, Open Research
Content Archive (ORCA), 2017.

LV00. Lokovic, Tom and Eric Veach: Deep Shadow Maps. SIGGRAPH
2000 Proceedings (August 2000), 2000:385–392, 2000.

Mit08. Mitchell, Kenny: Volumetric Light Scattering as a Post-Process. In
Nguyen, Hubert (editor): GPU Gems 3, pages 275–285. Addison-
Wesley, 2008.

MSS+10. Meyer, Quirin, Jochen Süßmuth, Gerd Sußner, Marc Stam-
minger and Günther Greiner: On Floating-Point Normal Vectors.
Computer Graphics Forum, 29(4):1405–1409, 2010.

References 70

OBA12. Olsson, Ola, Markus Billeter and Ulf Assarsson: Clustered
Deferred and Forward Shading. In Proceedings of the Fourth ACM
SIGGRAPH / Eurographics Conference on High-Performance Graph-
ics, EGGH-HPG’12, pages 87–96, Goslar, DEU, 2012. Eurographics
Association.

Per12. Persson, Tobias: Practical Particle Lighting, 2012.
Per15. Persson, Emil: Practical Clustered Shading, 2015.
Pet16. Peters, Christoph: Free blue noise textures, 2016.
PHJ17. Pharr, Matt, Greg Humphreys and Wenzel Jakob: Physically

Based Rendering: From Theory to Implementation. The Morgan Kauf-
mann series in interactive 3D technology. Morgan Kaufmann, Cam-
bridge, MA, Third edition edition, 2017.

Sal16. Salvi, Marco: An Excursion in Temporal Supersampling, 2016.
SG16. Sousa, Tiago and Jean Geffroy: The devil is in the details: idTech

666, 2016.
SVLL10. Salvi, Marco, Kiril Vidimče, Andrew Lauritzen and Aaron

Lefohn: Adaptive Volumetric Shadow Maps. Computer Graphics Fo-
rum, 29(4):1289–1296, 2010.

SWR13. Sousa, Tiago, Carsten Wenzel and Chris Raine: The Rendering
Technologies of Crysis 3, 2013.

TU09. Tóth, Balázs and Tamás Umenhoffer: Real-time Volumetric
Lighting In Participating Media. EUROGRAPHICS 2009, 2009.

Val14a. Valient, Michal: Reflections and Volumetrics of Killzone Shadow
Fall, 2014.

Val14b. Valient, Michal: Taking Killzone Shadow Fall Image Quality into
the Next Generation, 2014.

Wen06. Wenzel, Carsten: Real-time Atmospheric Effects in Games, 2006.
Wen07. Wenzel, Carsten: Real-time Atmospheric Effects in Games Revis-

ited, 2007.
Wih17. Wihlidal, Graham: 4K Checkerboard in Battlefield 1 and Mass Ef-

fect Andromeda, 2017.
Wro14. Wroński, Bart lomiej: Volumetric Fog: Unified compute shader

based solution to atmospheric scattering, 2014.
Xu16. Xu, Ke: Temporal Antialiasing In Uncharted 4, 2016.
YK08. Yuksel, Cem and John Keyser: Deep Opacity Maps. Computer

Graphics Forum, 27(2):675–680, 2008.

A

Erklärung der Kandidatin / des Kandidaten

� Die Arbeit habe ich selbstständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel verwendet.

� Die Arbeit wurde als Gruppenarbeit angefertigt. Meine eigene Leistung ist
...

Diesen Teil habe ich selbstständig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel verwendet.

Namen der Mitverfasser: ...

Datum Unterschrift der Kandidatin / des Kandidaten

	Introduction
	Related Work
	Physical Basis
	Volume Properties
	Light Propagation in Volumes
	Application in Real-Time Rendering

	Volumetric Lighting
	Billboard Particles
	Screen Space Post-Processing Effect
	Ray Marching
	Volumetric Fog

	Volumetric Shadows

	Implementation
	Implementation Framework
	Volumetric Lighting
	Participating Media Materials
	Initial Implementation
	Temporal Filter
	Local Lights
	Local Participating Media
	Ghosting
	Leaking
	Long Range Volumetric Lighting
	Checkerboard Rendering
	Rendering

	Volumetric Shadows
	Ray Marching Voxels
	Fourier Opacity Mapping
	Local Lights
	Directional Lights

	Measurement Method
	Test Configurations
	Test Systems

	Results and Discussion
	Volumetric Lighting
	Merged V-Buffer and In-Scattering
	Checkerboard Rendering
	Volumetric Fog
	Long Range Volumetric Lighting

	Volumetric Shadows
	A Unified Solution

	Conclusion
	Conclusion
	Future Work

	References
	Erklärung der Kandidatin / des Kandidaten

