Informatik SC H UL E€E
Hauptcampus T R I€E R

State of the Art in Image-Based Post-Processing Effects
State of the Art der bildbasierten Post-Processing Effekte

Tim Dorries

Bachelor’s Thesis
Advisor: Prof. Dr. Christof Rezk-Salama

Trier, November 15, 2018

Abstract

Image-based post-processing effects are commonly used in real-time rendering ap-
plications to simulate optical phenomena in real cameras and other lighting effects.
Recent advances in this field have brought forth a wide variety of techniques, pro-
ducing high quality effects. This thesis aims to give an overview of and a compar-
ison between modern approaches to post-processing, highlighting concepts that
might prove important in future research. Focus is placed on motion blur, depth of
field and screen space ambient occlusion (SSAQO). In particular, scatter-as-gather
algorithms for both motion blur and depth of field are discussed. Scatter-as-gather
depth of field is contrasted by sprite-based depth of field, a technique promising
high quality visuals on powerful hardware. Discussed screen space ambient occlu-
sion techniques include the original SSAO algorithm and modern horizon-based ap-
proaches like Horizon-Based Ambient Occlusion (HBAO) and Ground Truth Ambi-
ent Occlusion (GTAO). It is concluded that modern image-based post-processing
effects produce high quality results without compromising performance. This is
made possible by exploiting temporal coherency and spreading computational work
over multiple frames. In addition, cache aware texture sampling strategies, such as
tile-based scatter-as-gather motion blur, save memory bandwidth, enabling high
performance.

Optische Phanomene realer Kameras, sowie andere Beleuchtungseffekte werden
in Real-Time Rendering Anwendungen haufig durch bildbasierte Post-Processing
Effekte simuliert. Neue Fortschritte in diesem Gebiet haben eine Vielzahl ver-
schiedener Techniken hervorgebracht. Diese Arbeit stellt eine Ubersicht mod-
erner Post-Processing Losungen an und vergleicht diese mit dem Ziel, vielver-
sprechende Konzepte fiir zukiinftige Forschung hervorzuheben. Der Fokus liegt
hierbei auf Motion Blur, Depth of Field und Screen Space Ambient Occlusion
(SSAO). Insbesondere werden Scatter-as-Gather Algorithmen fiir sowohl Motion
Blur, als auch Depth of Field behandelt. Scatter-as-Gather Depth of Field wird
mit spritebasiertem Depth of Field kontrastiert, eine Technik, die hohe Qualitéit
auf leistungsfahiger Hardware verspricht. Im Rahmen von Screen Space Ambi-

Abstract 111

ent Occlusion werden der orginale SSAO Algorithmus, sowie moderne horizont-
basierte Ansétze, wie Horizon-Based Ambient Occlusion (HBAO) und Ground
Truth Ambient Occlusion (GTAO) thematisiert. Es stellt sich heraus, dass mod-
erne bildbasierte Post-Processing Effekte fahig sind, qualitativ hohe Ergebnisse zu
liefern, ohne dabei die Performanz negativ zu beeintrachtigen. Dies wird ermoglicht
durch das Nutzen zeitlicher Kohéarenzen, sodass Berechnungen iiber mehrere Bilder
verteilt werden kénnen. Zudem schonen cache-bewusste Speicherzugriffsstrategien,
wie kachelbasiertes Scatter-as-Gather Motion Blur, die Speicherbandbreite, was
eine hohe Performanz erlaubt.

Contents

I__TIntroductionl. 1
[1.1 Image-Based Post-Processing Effects|. 1
(1.2 Implementation Framework| 2

2 Related Workl| 3
2.1 Motion Blurl. ... 3
[2.2 Depth of Field|. 4
[2.3 Screen Space Ambient Occlusion|..............)

B Methodl 6
.1 Motion Blurl. ... 6

[3.1.1 Physical Basis and Motivation|............ 6
[3.1.2 Velocity Buffer Generation|............... 6
[3.1.3 Simple Motion Blur|............ 9
[3.1.4 Single-Direction Scatter-as-Gather| 11
1-Di 1 -ag-Gatherl.......... ... L 16

[3.2 Depth of Field|....... 21
[3.2.1 Physical Basis and Motivation|......................... ... 21
[3.2.2 Implementing a Virtual Cameral 21
(3.2.3 Filter Kernelsl 23
[3.2.4 Simple Depth of Field| 24
[3.2.5 Sprite-Based Depth of Field|............ 25
[3.2.6 Scatter-as-Gather Depth of Field|. 28
[3.2.7 Depth ot Field Implementation Considerations|.............. 32

[3.3 Screen Space Ambient Occlusion|.......... 32
[3.3.1 Physical Basis and Motivation|............................ 32
[3.3.2 Original Algorithm|......... 35
[3.3.3 Hemisphere Kernel|. 39
[3.3.4 Horizon-Based Ambient Occlusionl 40
[3.3.5 Ground-Truth Ambient Occlusion|............. 44

Contents \%
[3.4.2 Depth of Field Test Setup|........... 52

[3.4.3 Screen Space Ambient Occlusion Test Setup|................ 52

4 __Results and Discussionl L. 54
M1 Motion Blurl.o 54
4.2 Depth of Field|. 56

4.3 Screen Space Ambient Occlusion|................ 60

B Conclusion| 64
BI Conclusion].o 64
B2 Future Workl oo 64
References|.oo i 65
[Erklarung der Kandidatin / des Kandidaten| 67

List of Figures

(1.1 Multi-Direction Scatter-as-Gather Motion Blur, Scatter-as-Gather |
| Depth of Field and Ground Truth Ambient Occlusion applied to |
| the Crytek Sponza scene.|........, 2

[3.1 Visualization of a velocity buffer featuring both object and camera |
I MOLIONL, . . oo 7

[3.2 Simple motion blur applied to an image ot a moving car.|.......... 10

[3.3 Single-direction scatter-as-gather motion blur applied to an image |
| of amoving car....... 12

[3.4 The velocity tile texture holds the velocity with the maximum |
| magnitude of each tile.| 13

[3.5 Strong differences between tiles can lead to motion blur artifacts.| .. 16

[3.6 The improved sampling scheme of multi-direction scatter-as-gather |
| motion blur almost completely removes the artifacts present in |
| single-direction scatter-as-gather motion blur. 17

[3.7 "The 49 sample filter kernel used for depth of field.| 24

[3.8 A simple bokeh depth of field implementation.|................... 24

[3.9 A depth of field effect can be achieved by drawing textured sprites |
| for every pixel.| 26

BI0TI oh - 5 The Teft half and the Tar Teld l
| texture is stored 1n the right half of the texture atlas.............. 27

[3.11 Scatter-as-gather in two dimensions. Source: |Jim14|, modified.| 29

[3.12 Scatter-as-gather depth of field applied to the scene............... 29

[3.13 The circle of confusion texture (left) is used to generate a tile |
| texture (right), holding the maximum circle of confusion of every tile.| 30

3.14 Direct illumination (left) and indirect illumination (right). 33

3.15 Without ambient occlusion, objects do not look connected (top

left). Adding ambient occlusion gives visual cues about spatial

relations between objects (top right). Visualization of the ambient

occlusion term (bottom).| 33
[3.16 SSAO computed for a scene of mixed complexity.| 36
[3.17 The four-by-four SSAO noise pattern is clearly visiblef............ 37

[3.18 Visualization of the SSAQO kernel on different surfaces.)............ 38

List of Figures VII
[3.19 Visualization of a hemispherical SSAO kernel on different surfaces. . 39
3.20 The ambient occlusion term calculated with a hemispherical kernel.| 40
3.21 Information about unoccluded directions (green) cannot be |

| extracted tfrom a height field. w, 1s the view vector. Source: |

| [JWPJI6b], modified.| 41
13.22 The ambient occlusion term caleulated with HBAOJ. 42
13.23 Horizon search with four steps (left to right and top to bottom). P |

| 1s the point to be shaded and .5; are the sample locations. Every |

found horizon is highlighted in green. Source: [BS08|, modified.| 44
[3.24 GTAO reference frame. w, is the view vector, #; and 0, are the |
| horizon angles and ¢ 1s the angle around the integration axis. |

| Source: [JWPJI16b], modified.| i i 45
13.25 The ambient occlusion term calculated with GTAOJ.............. 46
[3.26 The normal n does not lie in the plane and must be projected |

onto it, ylelding the projected normal n,. 6 is the horizon. Source: |
[JWPJ16b], modified.| A7

[3.27 Without the spatial noise reduction, the noise pattern is clearly |

| visible (left). The result of this operation (right) still needs to be |

| filtered temporally.|. 49
[3.28 False occlusion is detected in horizon based approaches when using |

| interpolated normals. Source: [BSO8|, modified.|............... ... 50
[3.29 Using a constant velocity ensures reproducibility. 52
1.1 Simple motion blur (top left), single-direction motion blur (top

right) and multi-direction motion blur (bottom) applied to the

SAIMNEC SCEIC .+« v o et e e e 54

m2

Simple depth of field (top left), sprite based depth of field (top

Arst test SCeNed . . . oot ot 57

right) and scatter-as-gather depth of field (bottom) applied to the

n3

Simple depth of field (top left), sprite based depth of field (top

right) and scatter-as-gather depth of field (bottom) applied to the

| second test scenel. Y
4.4 SSAO (top left), SSAO (Hemisphere) (top right), HBAO (bottom |
| left) and GTAO (bottom right) applied to the first test scene/| 61

IS5

SSAO (top left), SSAO (Hemisphere) (top right), HBAO (bottom |

left) and GTAO (bottom right) applied to the second test scene.... 61

List of Tables

[3.1 Hardware specifications of the two test systems.| o1
[3.2 Overview of techniques measured at each benchmark pass.|........ o1
(3.3 SSAO (Hemisphere) parameters used during the benchmarks|. 53
[3.4 HBAO parameters used during the benchmarks.| 53
[3.5 GTAO parameters used during the benchmarks.|................. 53
4.1 Motion blur timings on the desktop test system. All timings are in
milliseconds.] 55
[4.2 Motion blur timings on the laptop test system. All timings are in
milliseconds. 55
4.3 Depth of field timings of the first test scene on the desktop test |
system. Time is measured in milliseconds.|. 58
[4.4 Depth of field timings of the first test scene on the laptop test |
system. Time is measured in milliseconds.|. 58
4.5 Depth of field timings of the second test scene on the desktop test |
system. Time is measured in milliseconds.|. 59
4.6 Depth of field timings of the second test scene on the laptop test |
system. Time is measured in milliseconds.|. 59
[4.7 Screen space ambient occlusion timings of the first test scene on |
the desktop test system. Time is measured in milliseconds.|........ 62
[4.8 Screen space ambient occlusion timings of the first test scene on |
the laptop test system. Time is measured in milliseconds.| 62
[4.9 Screen space ambient occlusion timings of the second test scene on |
the desktop test system. Time 1s measured in milliseconds.|........ 62
[4.10 Screen space ambient occlusion timings of the second test scene on |
the laptop test system. Time is measured in milliseconds.| 63

1

Introduction

1.1 Image-Based Post-Processing Effects

The field of computer graphics strives to create images indistinguishable from those
taken with a real camera. Offline rendering techniques already deliver results very
close to this goal. On the contrary, real-time rendering applications require solu-
tions capable of mimicking the results produced by offline techniques, running in a
fraction of the time. Real-time rendering applications such as games often use hard-
ware acceleration in the form of graphics chips. Modern graphics hardware creates
images by rasterizing primitives, usually triangles. Although significant progress
has been made in real-time lighting algorithms, images synthesized through ras-
terization usually lack certain effects commonly found in photography and film.
Many of these effects, like chromatic aberration, film grain or depth of field are
caused by the way cameras create images. Since they are ubiquitous in movies and
other media, simulating these effects can significantly contribute to the perceived
realism of computer generated images. In real-time rendering this is usually done
using image-based post-processing techniques. Post-processing effects are applied
after an image has been rendered. While offline techniques have access to a com-
plete description of the scene, real-time approaches often do not. For this reason,
post-processing in real-time typically generates the finished image based on infor-
mation taken solely from previously rendered images. Due to this limitation and
the requirement of running in real-time, many effects heavily approximate real
phenomena. Graphics hardware has developed rapidly in recent years, allowing
new techniques to gradually abandon certain approximations and model reality
ever closer. With an abundance of image-based post-processing effects available,
this thesis aims to give an overview of and a comparison between promising state
of the art techniques. In particular, several motion blur, depth of field and screen
space ambient occlusion algorithms will be discussed. Although screen space am-
bient occlusion is not exactly a post-processing effect, it is often placed into this
category due to its image-based nature. All techniques will be compared with re-
spect to their performance, ease of implementation and visual accuracy. Figure|l.1
demonstrates motion blur, depth of field and screen space ambient occlusion.

1.2 Implementation Framework 2

Fig. 1.1. Multi-Direction Scatter-as-Gather Motion Blur, Scatter-as-Gather
Depth of Field and Ground Truth Ambient Occlusion applied to the Crytek Sponza
scene.

1.2 Implementation Framework

All effects and techniques discussed in this thesis have been implemented using
a custom framework based on C++ and OpenGL 4.5. The framework features
physically based, deferred rendering. Having access to a geometry buffer opens
additional options when implementing image-based post-processing effects. Since
the renderer uses OpenGL, all listings in this thesis use the OpenGL Shading
Language (GLSL).

2
Related Work

2.1 Motion Blur

Motion blur can be separated into camera and object motion blur. The former is
trivially computable from the view projection matrix. Object motion blur is con-
siderably more difficult to achieve and is prone to visual artifacts. Green [Gre(3]
proposes combating harsh silhouettes around motion blurred objects by stretching
object geometry along its screen space velocity direction. Motion blur in the video
game Portal is restricted to camera motion. Vlachos et al. [VIa08] decompose the
effect into vertical, horizontal, roll and a forward blur direction. These components
are then weighted and combined to produce the finished effect.

For the video game Crysis, Sousa et al. [Sou(8] treat camera and object motion
blur separately. Camera motion blur is achieved by rendering a sphere around the
camera. Velocities are computed directly as the difference of the sphere vertex po-
sitions in screen space. Blurring is then done in the same pass. Nearby geometry
is masked out based on depth. Iterative application of the same filter pass is used
to increase blur quality. Object motion blur is achieved with a velocity buffer. The
velocities are dilated in the blur pass, eliminating sharp edges. Camera and object
motion blur are combined, producing the finished image.

McGuire et al. [MHBO12] reason about scatter-as-gather approaches to motion
blur and use a secondary texture to determine the blur direction of a local pixel
neighborhood. The technique exclusively samples along this direction, producing
accurate blur around object edges. Sousa et al. [Soul3] improve upon this tech-
nique by leveraging modern hardware’s SIMD (Single Instruction Multiple Data)
capabilities. Guertin et al. [GMNI13] introduce further improvements to this tech-
nique. They add a second sampling direction, greatly reducing previously present
artifacts. Jimenez et al. [Jim14] extend this approach with more accurate sample
weighting.

This thesis will focus on recent scatter-as-gather approaches, highlighting their
differences and implementation details.

2.2 Depth of Field 4

2.2 Depth of Field

Convincing depth of field has been a difficult effect to achieve for a long time.
Scheuermann [Sch04] uses a variable size filter kernel to blur the downsampled
source image. The circle of confusion filter kernel uses a poisson distribution to
place the samples. Color bleeding from sharp foreground objects onto blurry back-
ground objects is reduced by taking the depth of samples in account.

Demers [Dem(7] compares several different depth of field techniques, among them
accumulation-buffer depth of field, which renders the scene multiple times from dif-
ferent angles and accumulates the result in a buffer. He notes that this technique
requires a large number of additional render passes to produce acceptable results,
making it impractical in most real-time applications. Demers further distinguishes
forward-mapped and reverse-mapped depth buffer depth of field. Forward-mapped
depth of field renders a sprite for every pixel. The sprite is scaled by the pixel’s
circle of confusion and blended additively into the scene. Contrary to this, reverse-
mapped depth of field tries to determine at each pixel, which other pixels blur
over it. Although forward-mapped depth of field can produce convincing results,
reverse-mapped depth of field seems to be the more promising technique, as it
maps better to graphics hardware.

Hammon [Ham08] builds on reverse-mapped depth of field (which is referred to
as scatter-as-gather depth of field) and introduces a number of changes to combat
sharp discontinuities on blurry foreground object silhouettes. He generates a full
resolution texture holding the circle of confusion for each pixel, downsamples it
to a lower resolution and applies a gaussian blur to pixels belonging to the near
field. Although not physically based, this procedure efficiently removes unpleasant
looking discontinuities.

Kasyan et al. [KSS11] batch motion blur and depth of field together and use taken
texture samples for both techniques, improving the performance. Similar to Mit-
tring et al. [MD11] and Valient et al. [Vall3], they also use forward-mapped depth
of field to produce high quality bokeh depth of field.

MeclIntosh et al. [MRD12] simulate the bokeh of polygonal apertures using separa-
ble filters. They approximate boolean unions and intersections using the min() and
maz() functions to composite basic shapes, producing polygonal bokeh shapes.
Based on the scatter-as-gather motion blur technique developed by McGuire et al.
[IMHBO12], Sousa et al. [Soul3] use a tile texture indicating the maximum circle
of confusion to determine the blur kernel radius. Jimenez et al. [Jim14] improve
upon Sousa et al.’s approach by reducing the required texture memory. They fur-
ther employ filtering techniques before and after the blur to reduce undersampling
artifacts. Similar to motion blur, scatter-as-gather techniques seem to be popular
in recent research, which is why this approach will be discussed in detail. In ad-
dition, forward-mapped depth of field will be implemented and contrasted with
other techniques.

2.3 Screen Space Ambient Occlusion 5

2.3 Screen Space Ambient Occlusion

Screen Space Ambient Occlusion (SSAO) was originally introduced with the video
game Crysis, released in 2007. Kajalin et al. [Kaj09] approximate ambient occlu-
sion as the ratio of visible and occluded samples in a spherical kernel applied in
screen space on the depth buffer.

Bavoil et al. [BSO8]|[BSDO0§] calculate ambient occlusion analytically as the angle
between the view-space tangent and the maximum horizon as seen from the pixel to
be shaded. They call this technique Horizon-Based Ambient Occlusion (HBAO).
Bavoil et al. [BS09] improve upon general SSAO artifacts that happen due to
missing information. They use depth peeling and enlarged input images featuring
a guard band to restore information previously unavailable during ambient occlu-
sion calculation.

Mattausch et al. [MSW10] exploit temporal coherence between frames to distribute
ambient occlusion calculation over time. They store the number of frames con-
tributing to a pixel and dynamically reduce the number of samples taken, when
the image is in a converged state.

Hoang et al. [HL11] improve upon the quality of previous SSAO techniques by
combining ambient occlusion results for images of various resolutions, producing
both small scale detail and a large scale effect.

McGuire et al. [MML12] introduced Scalable Ambient Obscurance (SAO), which
prefilters the depth buffer, improving memory efficiency and allowing large kernel
radii.

Temporally filtered SSAO often has visual artifacts in the form of moving ob-
jects leaving trails. Bavoil et al. [BA12] developed selective temporal filtering, a
technique that classifies pixels as stable (potentially leaving trails) or unstable (po-
tentially flickering). Temporal filtering is then disabled for stable pixels, resulting
in a mostly flicker and trailing free image.

Timonen [TimI13al [Tim13b] recognized that in horizon-based techniques adjacant
pixels share the same texture lookups and often have similar horizons. He leverages
this by building a data structure allowing efficient lookup of maximum horizons in
constant time.

Since SSAO is a bandwidth intensive effect, it is often done in half resolution.
Bavoil et al. [BJ13] note that the usage of tiled noise in the sampling kernel is
detrimental to performance, as it leads to texture cache trashing. They propose
deinterleaving the source image into several smaller images, each having its own
constant noise value. Ambient occlusion is then calculated for each smaller image.
In a reinterleaving pass the final image is constructed by interleaving the results
of the small images.

Jimenez et al. [JWPJ16a] [JWPJ16D] introduced Ground Truth Ambient Occlusion
(GTAO), a novel technique aimed at achieving results close to ambient occlusion
ground truth. GTAO is a horizon-based technique, heavily relying on temporal
filtering to achieve the performance target of 0.5 ms on consoles. Horizon-based
techniques like GTAO and HBAO are state of the art, which is why they will be
discussed extensively in this thesis.

3
Method

3.1 Motion Blur
3.1.1 Physical Basis and Motivation

Motion blur is an effect that happens in photography where moving objects appear
to streak across the image. This effect happens both in digital and in analog
photography. When a camera creates an image, it exposes its sensor to the incoming
light. However, this exposure is not instantaneous but happens over a period of
time, called exposure time or shutter speed. While the sensor is exposed to the
incoming light, the scene may change for various reasons, such as movement of
objects or the camera itself. This movement then manifests itself as streaking in
the image along the movement direction. For this reason the strength of the blur
effect depends on exposure time and object movement, where a long exposure
time and fast movement result in strong motion blur. Although motion blur is not
noticeable in human vision, it is often used in video games due to the ubiquity of
movies and images featuring it. Motion blur can be used to convey the impression
of very fast motion. Another frequently used application of motion blur is masking
of low frame rates.

3.1.2 Velocity Buffer Generation

All motion blur algorithms presented in this thesis rely on per-pixel motion vectors
stored in a velocity buffer. These vectors represent the difference between a pixels
current and previous position in image space and are used to determine the blur
direction. This difference correlates to the relative movement that happened be-
tween two frames. Pixels can move because of camera movement as well as because
of object movement. Figure [3.1] shows a velocity buffer featuring both object and
camera motion. The car is moving to the lower left corner, while the camera is
rotating clockwise around the y-axis.

Camera Motion

Computation of camera motion vectors is simple, as it requires only one matrix
multiplication and one depth buffer sample. Specifically a reprojection matrix

3.1 Motion Blur 7

Fig. 3.1. Visualization of a velocity buffer featuring both object and camera
motion.

reproj needs to be constructed. This matrix consists of the product of the inverse
view projection matrix of the current frame viewProj_} and the view projection
matrix of the previous frame viewProjy,.,, shown in equation .

reproj = view Projp e, x view Proj..; (3.1)

To reproject a pixel, its position in normalized device coordinates positionypc
must be determined. This can be done by mapping the pixel’s texture space co-
ordinate from the range [0, 1] to the range [-1, 1]. The texture space coordinate
is three-dimensional. Its first two components position Xy and positionYyy are
given by the two-dimensional pixel position in texture space, whereas the third
component depthyy needs to be sampled from the depth buffer. The construction
of this new coordinate is shown in equation 3.2

positionypc = (positionXyy, positionYyy, depthyy)’ * 2 — 1 (3.2)

The actual reprojection is done by multiplying positionypc with reproj. Since
reproj is a 4x4 matrix, positionypc needs to be expanded by a fourth component
with the value 1. Equation [3.3|shows how a pixel is reprojected using its position in
normalized device coordinates and the previously constructed reprojection matrix.

POSition,e, = reproj * (positionypc, 1)T (3.3)

After the multiplication a perspective division must be performed. This is done
by dividing the result vector by its fourth component. The first two components
must now be mapped from normalized device space to texture space. The result of

3.1 Motion Blur 8

this operation is the coordinate of the pixel in the previous frame corresponding
to the current pixel. These operations are summarized in listing 3.1}

vec2 reproject (vec2 texCoord, mat4 reproj, sampler2D depthBuffer)

1
2 {
3 float depth = texture(depthBuffer, texCoord).x;

4 vec3 positionNDC = vec3(texCoord, depth) % 2.0 — 1.0;
5 vecd4 positionReproj = reproj % vec4d(positionNDC, 1.0);
6 return (positionReproj.xy / positionReproj.w) * 0.5 + 0.5;
7

}

Listing 3.1. Reprojection of a screen space coordinate into the previous frame
using a uniform reprojection matrix.

It should be noted that the reprojection matrix is uniform across the whole image,
since it only depends on the previous and current view projection matrices. As
such it can be calculated once and sent as a uniform value to the shader. Since this
technique requires only a single matrix multiplication and otherwise only depends
on a depth buffer sample, it can be implemented ad-hoc in the same render pass
that does the motion blur. This saves memory and bandwidth as the resulting
velocity vector does not need to be stored in a buffer. The obvious drawback
of this technique is that it only accounts for camera motion and ignores object
motion.

Object Motion

To compute per-object motion vectors, one needs to account for changes in the
model matrix of objects. This is best done while drawing them. Every object needs
to save its previous frame’s model matrix. When drawing the object, both the cur-
rent and the previous model view projection matrices are sent to the vertex shader.
Every vertex must then be transformed by both matrices. Afterwards a perspective
division must be performed on both coordinates. The per-object motion vector is
now given by mapping both coordinates from normalized device space to texture
space and taking their difference. Listing summarizes this process.

1 wvec2 reproject (vec3 position, matd4d prevTransformation,

2 mat4 curTransformation)

3 {

4 vecd prevPosition = prevTransformation % vec4(position, 1.0);
5 vecd4d curPosition = curTransformation * vec4(position, 1.0);
6 vec2 prev = (prevPosition.xy / prevPosition.w) % 0.5 + 0.5;
7 vec2 cur = (curPosition.xy / curPosition.w) % 0.5 + 0.5;

8 return cur — prev;

9 }

Listing 3.2. Reprojection of a screen space coordinate into the previous frame
using a the previous object transformation.

The resulting per-object velocity vector should be written to a floating point tex-
ture of at least 16 bits per component as otherwise precision errors might occur.
Alternatively the vector can be encoded and stored in smaller formats, however
it may be desired for other effects relying on a velocity buffer (such as temporal

3.1 Motion Blur 9

anti-aliasing or GTAO) to store the velocity vectors as precise as possible. It should
be noted that the per-object velocity vectors account for both camera and object
motion, because the previous frames transformation matrix used in the computa-
tion also contains the previous frames view projection matrix.

Although precise velocity vectors may be required for other effects, sometimes it is
necessary to modify the velocities to achieve a more visually pleasing motion blur.
One issue that might arise when using precise velocities is that motion blur is in-
versely dependent on frame rate. This is because the frame time is effectively used
as exposure time when creating the velocity buffer. This effect can be corrected
by scaling the velocities by a frame time dependent factor as seen in equation [3.4]

scaleFactor = TARGET_FRAME TIME/ frameTime (3.4)

Vlachos et al. [VIa08] suggest reducing the influence of camera motion to about 15
%. This is easily done by linear interpolation between the previous and the current
view projection matrices, shown in equation [3.5

ViewProjprevcorrected = 0.15 % View Projyre, + (1 — 0.15) % viewProje,, (3.5)

Modifying the velocity buffer as described might lead to artifacts in other ef-
fects also relying on it. Since motion blur should be applied immediately before
tonemapping, other effects requiring velocities are usually already done at this
point. This allows using precise velocities for most of the pipeline and only modi-
fying the velocity buffer before using it for motion blur. The modification itself can
be efficiently done by binding the velocity buffer as a read/write texture. A single
pass of a compute shader can then read each velocity, modify it and write it to the
same location, avoiding the additional texture required by ping-pong techniques.

3.1.3 Simple Motion Blur
Overview

The basic idea of most motion blur algorithms is to blur the image along certain
directions, which are in most cases given per pixel [Gre03][Sou(8]. The blur uses
uniform weights and an arbitrary number of samples. Blur quality can be improved
by raising the number of samples. Samples can be placed uniformly or jittered per
pixel to trade banding for noise [Gre(3]. Figure 3.2|illustrates what this effect looks
like.

3.1 Motion Blur 10

Fig. 3.2. Simple motion blur applied to an image of a moving car.

Implementation

A very simple implementation of this basic motion blur can be achieved by placing
a fixed number of samples along the current pixel’s velocity direction and averag-
ing the sum of all samples. Motion blur should be done before tonemapping and
can in fact be done in the same shader pass that performs the tonemapping. An
implementation of this algorithm is given in listing [3.3|

1 vec3 motionBlur(vec2 texCoord, sampler2D colorTexture,

2 sampler2D velocityTexture)

3 {

4 vec2 velocity = texture(velocityTexture, texCoord).xy;
5 vecd sum = vec3 (0.0, 0.0, 0.0);

6

7 const float SAMPLE COUNT = 25.0;

8

9 for (float i = 0.0; i < SAMPLECOUNT; ++i)

10 {

11 float t = mix(—-1.0, 1.0, i / (sampleCount — 1.0));
12 vec2 offset = velocity * t;

13 sum += texture(colorTexture, texCoord + offset).rgb;
14 }

15

16 return sum / SAMPLE.COUNT;

17}

Listing 3.3. A simple motion blur implementation.

This algorithm can additionally be improved by limiting the number of samples
to a maximum value and skipping the blurring if the velocity is too small. Care
should also be taken when performing motion blur on a still picture, as all velocity
vectors will have a length of zero. This results in the loop exiting before the first
iteration, causing sum to remain zero, which in turn makes the whole image black.
For this reason it is necessary to check if the velocity is sufficiently large. If this

3.1 Motion Blur 11

is the case, motion blur can be performed as usual. Otherwise the blur needs to
be skipped and the pixel’s color must be sampled from the input image. These
improvements have been implemented in listing |3.4

1 vec3 motionBlur(vec3 color, vec2 texCoord,

2 sampler2D colorTexture , sampler2D velocityTexture)
3 {

4 vec2 velocity = texture(velocityTexture, texCoord).xy;

5

6 const float MAXSAMPLES = 25.0;

7 float velocityLength = length(velocity = textureSize(velocityTexture, 0));
8 float sampleCount = min(floor (velocityLength), MAXSAMPLES);
9 vecd result = color;

10

11 if (sampleCount >= 1.0)

12

13 vec3 sum = vec3(0.0);

14

15 for (float i = 0; i < sampleCount; ++i)

16 {

17 float t = mix(—1.0, 1.0, i / (sampleCount — 1.0));

18 vec2 offset = velocity = t;

19 sum += texture(colorTexture, texCoord + offset, 0).rgb;
20 }

21

22 result = sum / sampleCount;

23 }

24

25 return result ;

26 }

Listing 3.4. Improved implementation of a simple motion blur effect.

This simple motion blur algorithm has several shortcomings which need to be
addressed in order to create plausible motion blur. The most prominent of these
shortcomings is the fact that for each pixel only its own velocity vector is exam-
ined. This results in abrupt borders on the silhouette of moving objects as motion
blur is only performed on pixels which are inside the object. The blur does not ex-
tend over static pixels around the moving object because these static pixels have a
velocity of zero and as such have no motion blur. This is especially visible in figure
on the silhouette of the car. There have been many attempts at solving this
problem, including dilating the velocities [Sou08] or stretching the geometry along
its motion vector using a geometry shader |[Gre03]. A popular modern approach
to this problem seem to be tile-based scatter-as-gather algorithms.

3.1.4 Single-Direction Scatter-as-Gather
Overview

The motion blur algorithm developed by McGuire et al. [MHBO12] makes use
of scatter-as-gather to combat sharp edges on object silhouettes. To understand
scatter-as-gather, it is important to realize that what motion blur tries to accom-
plish is to scatter a pixel’s color along a certain direction. However, scattering does
not map very well to modern graphics hardware. For this reason it is beneficial to

3.1 Motion Blur 12

invert the problem to make use of gathering. Specifically, each pixel must check if
any other pixel scatters over it and if it does, gather this pixel and average it with
all other pixels scattering over the current one. This formulation of the problem
poses a significant difficulty when trying to implement it. To properly determine
the pixels scattering over it, every pixel would have to sample the velocity of every
other pixel in the image. This is infeasible in real-time and therefore an approxi-
mation must be made. McGuire et al. [MHBO12] propose dividing the image into
tiles and for each tile determining the velocity with the maximum magnitude. Af-
terwards the same procedure needs to be applied to the 3x3 neighborhood of each
tile. This ensures that each tile holds the largest velocity that might scatter over
a pixel inside this tile. The texture holding the tiles can now be used when per-
forming motion blur. Each pixel gathers samples along its tile’s dominant velocity
direction and determines for each sample, using the sampled velocity, if the sample
scatters over it. This process eliminates the abrupt borders around moving objects
because pixels outside the object can access information about the movement of
pixels inside the object by sampling the tile texture. Figure demonstrates how
this algorithms improves upon the simple motion blur effect discussed in subsec-
tion|3.1.3] Note how there are no abrupt discontinuities on the silhouette of the car.

Fig. 3.3. Single-direction scatter-as-gather motion blur applied to an image of a
moving car.

Implementation

The algorithm is divided in three passes. The first pass calculates the maximum
velocity per tile, the second pass does the same for the local tile neighborhood and
the final pass does the actual filtering. Calculating the maximum tile velocity is

3.1 Motion Blur 13

a separable problem and as such can be accelerated by separating it into a hor-
izontal and a subsequent vertical pass, effectively reducing the complexity from
O(m xn) to O(m + n). Figure shows the resulting tile texture when applying
this operation to the velocity buffer in figure [3.1]

Fig. 3.4. The velocity tile texture holds the velocity with the maximum magnitude
of each tile.

For the filtering pass McGuire et al. [MHBO12] distinguish three cases when cal-
culating the weight of a sample:

1. The sample is in front of the center pixel and blurs over it.
2. Any sample behind a blurry center pixel.
3. Simultaneously blurry sample and center pixel.

The first case is the most obvious one, where another pixel is in front of the cen-
ter pixel and blurs over it. In the second case the center pixel is blurry and the
background behind it must be estimated by using the color of the sample. This
introduces error but is necessary because the information about the scene behind
the center pixel is lost at this point of the pipeline. In the last case both the sample
and the center pixel are blurry and need to blur over each other.

The three cases presented above already hint that sample weighting is dependent
on depth. In fact, neglecting depth leads to visual artifacts where fast moving
background objects blur over static foreground objects, e.g. a car passing behind
a street lamp. Note that this does not happen in the algorithm discussed in sub-
section because it has the additional error that motion blur is only applied
to pixels that are themselves moving. However when extending the blur over the
object boundary using scatter-as-gather, depth information must be considered.
This is done by a continuous classification in relative background and foreground.

McGuire et al. [MHBO12] use camera space depth values and assume a right
handed coordinate system, so the depth values are linear and in the range of the

3.1 Motion Blur 14

negative near plane and the negative far plane. They use the cone() function for
the first two cases, the cylinder() function for the last case, where both sample
and center pixel are blurry. The softDepthCompare() function is used to classify
the sample as fore- or background. All functions are shown in listing |3.5]

1 float cone(float dist, float velocityMag)

2 |

3 return velocityMag > 0.0 7

4 clamp (1.0 — dist / velocityMag, 0.0, 1.0) : 0.0;

5

6

7 float cylinder (float dist, float velocityMag)

8 A

9 return 1.0 — smoothstep(0.95 % velocityMag, 1.05 % velocityMag, dist);
10 }

11

12 float softDepthCompare(float a, float b)

13 {

14 return clamp(1.0 — (a — b) / SOFTZEXTENT, 0.0, 1.0);
15 }

Listing 3.5. Utility functions for single-direction scatter-as-gather motion blur
IMHBO12].

The full algorithm is shown in listing [3.6]

3.1 Motion Blur 15

1 vec3 singleDirectionMotionBlur (vec2 texCoord, vec3 centerColor,
2 sampler2D colorTexture, sampler2D depthTexture ,
3 sampler2D velocityTexture , sampler2D tileTexture)
4 q

5 vec2 vN = texture(tileTexture, texCoord).xy;

6

7 vec3d result = centerColor;

8

9 if (dot (vN, vN) <= dot (0.5, 0.5))

10 {

11 return centerColor;

12 }

13

14 vec2 vC = texture(velocityTexture, texCoord).xy;

15 float dC = texture(depthTexture, texCoord).x;

16

17 float vCLen = max(length(vC), 0.5);

18 float vNLen = length (vN);

19

20 float weight = 1.0 / vCLen;

21 vec3d sum = color * weight;

22

23 const int SAMPLE.COUNT = 25;

24

25 float j = random(—0.5, 0.5);

26

27 for (int i = 0; i < SAMPLE.COUNT; ++i)

28 {

29 if (i = SAMPLE.COUNT / 2)

30 {

31 continue;

32 }

33

34 float t = mix(—1.0, 1.0, (i + j + 1.0) / (SAMPLE.CCOUNT + 1.0));
35 vec2 S = (floor (texCoord * texSize) + floor(vN % t + 0.5)) / texSize;
36

37 float dS = texture(depthTexture, S).x;

38

39 float f = softDepthCompare(dC, dS);

40 float b = softDepthCompare(dS, dC);

41

42 vec2 vS = texture(velocityTexture, S).xy;

43

44 float vSLen = max(length(vS), 0.5);

45

46 float dist = abs(t) * vNLen;

47

48 float alpha = f % cone(dist, vSLen)

49 + b * cone(dist, vCLen)

50 + cylinder (dist , vSLen)

51 * cylinder (dist, vCLen) x 2.0;
52

53 weight += alpha;

54 sum += alpha * centerColor;

55 }

56

57 return sum / weight;

58}

Listing 3.6. Implementation of single-direction scatter-as-gather motion blur.

It should be noted that the algorithm in listing trades banding for noise by
using a random offset j. This can be used to disguise low sample counts. Another
interesting detail is the fact that the center sample, which in most cases should be
the center pixel, is skipped in the blur loop, as it is already accounted for in the

3.1 Motion Blur 16

sum before entering the loop. Since the filtering pass has access to the tile texture,
motion blur processing can be skipped altogether if the maximum velocity has
a magnitude equal to or less than half a pixel. The presented algorithm creates
plausible motion blur, respecting depth discontinuities, reconstructing occluded
backgrounds and properly accounting for the reach of pixel scattering.

3.1.5 Multi-Direction Scatter-as-Gather
Overview

The motion blur algorithm presented in subsection [3.1.4] although in most scenes
very convincing, introduces major error by only considering the maximum velocity
of each tile. The visibility of this error depends on the scene but is maximized when
many small objects are moving in different directions. This is because neighboring
tiles have drastically different velocity directions. The problem also arises when
a very small object is moving very fast in a different direction than most other
objects in a tile. The high velocity of the small object masks all other velocities.
McGuire et al. place all samples exclusively along the tile maximum
velocity direction. Samples are weighted based only on their velocity magnitude
and not their direction. The error introduced by this leads to motion blur dis-
continuities between tile boundaries. Figure demonstrates this visual artifact
around the rear end of the car.

Fig. 3.5. Strong differences between tiles can lead to motion blur artifacts.

For this reason Guertin et al. [GMNI3] propose a number of improvements to the
motion blur algorithm discussed in subsection [3.1.4, The major contribution is
that samples are no longer placed only along the tile maximum velocity direction
but also along an additional direction to capture object movement that may have

3.1 Motion Blur 17

been masked by other large velocities. Guertin et al. [GMNT3] discuss several op-
tions for the secondary sampling direction and how many samples to place along
it. They reason that if a pixel’s velocity differs significantly from the dominant
direction, then it should also be considered during sampling. Additionally, they
modify the sample weighting to account for velocity directions.

Fig. 3.6. The improved sampling scheme of multi-direction scatter-as-gather
motion blur almost completely removes the artifacts present in single-direction
scatter-as-gather motion blur.

Implementation

Minimizing tile boundary discontinuities starts with selecting the proper dominant
velocity. Guertin et al. [GMN13] suggest a tight culling of dominant velocities dur-
ing the maximum neighbor velocity tile pass. In particular, they observed that
neighboring velocity tiles can be ignored if their direction does not blur over the
center tile. Although this reduces the error introduced by irrelevant dominant
directions masking more important directions, this optimization was not imple-
mented due to time constraints. When sampling the dominant direction from the
tile texture during the motion blur pass, Guertin et al. [GMNT3] propose stochas-
tically offsetting the texture lookup for pixels near a tile edge, using a linear falloff.
The probability of sampling a neighboring tile decreases with increasing distance
to the tile edge.

Using the center pixel’s velocity direction wastes samples when the velocity is very
small. Guertin et al. [GMNI3] propose linearly interpolating between the center
pixel velocity direction and the direction perpendicular to the dominant one, based
on the center pixel velocity magnitude. This is shown in equation where w.(p)

3.1 Motion Blur 18

is the resulting secondary sampling direction, v(p) is the velocity at point p, v:- ()
is the direction perpendicular to the dominant direction in tile ¢ and ~ is a user
defined threshold.

we(p) = lerp(v(p), Vg (1), ([[v(p)]] — 0.5)/7) (3.6)

Guertin et al. [GMNT13] discuss dynamically splitting the samples between the two
sampling directions but ultimately decide that placing half of the samples in each
direction is sufficient and that samples wasted on the less important direction do
not cause objectionable artifacts under motion. Sampling directions are alternated
each sample.

Compared to the motion blur algorithm developed by McGuire et al. [MHBO12],
the sample weighting has been modified slightly. However, the basic cases remain
the same as before:

1. The sample is in front of the center pixel and blurs over it.
2. Any sample behind a blurry center pixel.
3. Simultaneously blurry sample and center pixel.

The first case, where the sample blurs over the center pixel, is additionally weighted
by the dot product of the sample’s velocity direction and the sampling direction.
This term restricts samples from contributing if their direction does not warrant
blurring over the center pixel.

In the second case the center pixel’s blur onto its surrounding causes a trans-
parency. This is additionally weighted by the dot product of the direction com-
puted using equation and the dominant direction.

In the last case, both the center pixel and the sample blur over one another. The
weight of this case is multiplied by the maximum of the two dot products of the
first two cases.

Note that the secondary sampling direction is always the center pixel’s direction.
we(p) is used in the dot product for the second (and third) case only. This may be
a misinterpretation of the authors’ intentions but it produces convincing results
and is true to the algorithm’s pseudo code listed in the paper [GMNI13].

Guertin et al. [GMNT13] propose to jitter the sampling using a halton sequence.
The halton values are sampled from a lookup texture. Introducing jitter into the
image trades banding for noise, masking low numbers of samples. Instead of a hal-
ton sequence, the implementation for this thesis uses interleaved gradient noise,
published by Jimenez et al. [Jim14]. A function to compute this noise is given in

listing

3.1 Motion Blur 19

float interleavedGradientNoise (vec2 v)

{
vec3 magic = vec3(0.06711056, 0.00583715, 52.9829189);
return fract (magic.z % dot(v, magic.xy));

}

Listing 3.7. A function to compute interleaved gradient noise [Jim14].

Uk W N~

Interleaved gradient noise features a mix of pseudo-random and regular qualities,
originally developed to be used for a shadow mapping filter kernel. The noise does
not need to be precomputed and sampled from a texture. Instead it can be com-
puted directly inside the motion blur shader, making the implementation simpler
and faster.

The complete algorithm is shown in listing [3.8]

3.1 Motion Blur

1 wvec3 multiDirectionMotionBlur (vec2 texCoord, vec3 centerColor,

2 sampler2D colorTexture, sampler2D depthTexture ,

3 sampler2D velocityTexture , sampler2D tileTexture)

4 q

5 vec2 texSize = textureSize(colorTexture, 0);

6

7 float j = interleavedGradientNoise (texCoord * texSize);

8 vec2 vmax = texture(tileTexture, texCoord + jitterTile (texCoord)).rg;
9 vmax *= texSize;

10 float vmaxLength = length (vmax);

11

12 if (vmaxLength <= 0.5)

13

14 return centerColor;

15 }

16

17 vec2 wN = vmax / vmaxLength;

18 vec2 vC = texelFetch(velocityTexture , ivec2(gl-FragCoord.xy), 0).rg;
19 vC = texSize;

20 vec2 wP = vec2(—wN.y, wN.x);

21 wP = (dot(wP, vC) < 0.0) ? —wP : wP;

22

23 float vCLength = max(length(vC), 0.5);

24 const float gamma = 1.5;

25 vec2 wC = normalize (mix(wP, vC / vCLength, (vCLength — 0.5) / gamma));
26

27 const float N = 25;

28

29 float totalWeight = N / (TILE_SIZE % vCLength);

30 vec3 result = centerColor x totalWeight;

31

32 float depthC = texelFetch(depthTexture, ivec2 (gl -FragCoord.xy), 0).x;
33 depthC = —linearDepth (depthC);

34

35 vec2 dN[2] = { wN, vC / vCLength };

36

37 for (int i = 0; 1 < N; 4++i)

38 {

39 float t = mix(—1.0, 1.0, (i + j * 0.95 + 1.0) / (N + 1.0));
40

41 vec2 d = bool(i & 1) ? vC : vmax;

42 float T = abs(t) % vmaxLength;

43 ivec2 S = ivec2(gl-FragCoord.xy) + ivec2(t * d);

44

45 float depthS = —linearDepth (texelFetch(depthTexture, S, 0).x);
46

47 float f = softDepthCompare(depthC, depthS);

48 float b = softDepthCompare(depthS, depthC);

49

50 vec2 vS = texelFetch(velocityTexture, S, 0).rg % texSize;
51

52 float vSLength = max(length(vS), 0.5);

53

54 int index = i & 1;

55 float wA = abs(dot(wC, dN[index]));

56 float wB = abs(dot(vS / vSLength, dN[index]));

57

58 float weight = 0.0;

59

60 weight += f * cone (T, vSLength) x wB;

61 weight += b % cone (T, vCLength) x wA;

62

63 weight += cylinder (T, min(vSLength, vCLength)) % max(wA, wB) * 2.0;
64

65 totalWeight += weight;

66 result += centerColor % weight;

67 }

68

69 return result / totalWeight;

70}

Listing 3.8. Implementation of multi-direction scatter-as-gather motion blur

3.2 Depth of Field 21

3.2 Depth of Field

3.2.1 Physical Basis and Motivation

Depth of field describes the distance to the plane of focus at which objects appear
acceptably sharp in an image. An optical camera can perfectly focus only on objects
at a certain distance. Everything at this distance is projected as a single dot onto
the camera sensor. Objects in front or behind the plane of focus are no longer
projected as a dot but as a circle where the radius depends on the distance to the
plane of focus. This is called the circle of confusion. Since sensors used in cameras
have a finite resolution, the circle manifests itself as blur only once it reaches a
certain radius. The size of the circle of confusion scales with the aperture size.
The quality of the blur in the out of focus region is commonly referred to as
bokeh. The shape of the bokeh highlights depends on the shape of the aperture. In
photography circular bokeh is preferred whereas in video games up until recently
polygonal bokeh was used more commonly. Depth of field is an effect that occurs
not only on film but also naturally in our eyes. As such it can add to the realism
of synthetic images. Contrary to real cameras, images created by rasterization
are perfectly sharp. Conceptually these images are created with a camera with
an infinitesimal small aperture, called a pinhole lens. Recalling that the circle of
confusion scales with aperture size, this means that rasterized images do not exhibit
any blur. For this reason depth of field must be artificially added to the rendered
image. It should be noted that convincing depth of field cannot be achieved with
a gaussian blur, because the characteristic bokeh shapes only appear when using
flat weighting.

3.2.2 Implementing a Virtual Camera

Achieving convincing depth of field strongly depends on the parameters used for
the effect. One way to provide good parameters is to implement a virtual cam-
era, mimicking a real optical camera. Such a virtual camera can be fed the same
parameters as a real camera. Done correctly, the depth of field effect should be
similar to the actual depth of field in photography. Among others, real cameras
feature the following parameters:

Focal Length

Focal Plane

Aperture Diameter
Focal Ratio

Shutter Speed

Sensor Sensitivity (ISO)
Film Width

Focal length F' is the distance from the lens to the point where the incoming rays
are brought to a focus. Objects inside the focal plane P are projected perfectly

3.2 Depth of Field 22

sharp onto the sensor. Focal ratio, also known as f-stops or f-number, can be com-
puted as the ratio between focal length and aperture diameter. Aperture diameter
is usually set indirectly via manipulation of the focal ratio parameter. Shutter
speed or exposure time is the period of time during which the sensor is exposed
to light. ISO is the sensitivity of the sensor. Film width is the width of the sensor
onto which the light is projected.

Shutter speed and ISO can be disregarded for depth of field computation as they
have no influence on the circle of confusion. In photography, the field of view
depends on film width and focal length. However, in real-time applications it is
usually desired to change the field of view directly. Thus, focal length can be ei-
ther derived from the field of view or set separately. Making field of view and focal
length independent of one another has the advantage of producing a consistent
effect. The obvious drawback is that the effect is no longer physically based, which
may or may not be noticeable to the viewer. For the implementation for this thesis
it was decided to couple field of view and focal length.

A virtual camera can then be implemented relying on only a few parameters:

Focal Plane
Focal Ratio
Field of View
Film Width

The focal plane can be determined automatically by taking a few samples from
the center of the depth buffer and smoothing them temporally. This ensures that
the center of the image is always in focus and that the focus does not change
abruptly. Alternatively, the focal plane can be set manually. Usual focal ratio val-
ues lie in the range [1.4, 16]. Field of view is a parameter that is already present
in real-time rendering applications. A commonly used film width is 35 mm. Note
that this refers to the width of the complete film, including areas where no light
is projected, like the perforated sides or the audio track. The width of the actual
area onto which light is projected differs from format to format but can be easily
looked up.

Based on these parameters, a physically based circle of confusion can be computed.
The circle of confusion CoC depends on focal length F', aperture diameter A, the
focal plane P and the distance D to the object that is being viewed. It can be
calculated using equation [3.7]

Fx«D FxP D—-F
- = F FaD

CoC = |((3.7)

3.2 Depth of Field 23

This simplifies to equation [3.8

Fx*(P—D)
D (P (P_F))I (3-8)

Focal length can be derived from the field of view using equation [3.9

CoC = |Ax(

0.5 % filmWidth
b= tan(fieldO fView/2) (8:9)

The aperture diameter can be computed from the focal length and the focal ratio
using equation [3.10]

A = F/ focal Ratio (3.10)

The distance D to the object being viewed is usually taken from the depth buffer.
Care should be taken when implementing these equations to ensure all values using
the same unit. The resulting circle of confusion computed using equation must
then be converted to pixels. This is easily done with equation [3.11

CoCpizeis = CoC/(filmWidth/imageWidth) (3.11)

The circle of confusion should be clamped to a maximum value to avoid cache
trashing and depending on the technique, undersampling or massive overdraw.
Achieving a desired look by manipulating these parameters is not always intuitive,
which is why many implementations seem to use a more simple, not physically
based function to compute the circle of confusion. The implementation for this
thesis uses the physically based method presented here.

3.2.3 Filter Kernels

Most depth of field techniques, including two of the techniques discussed in this
thesis, rely on a filter kernel to achieve the desired blur. Since circular bokeh seems
to be the preferred shape, a circular kernel was used for this thesis. Sousa et al.
[Sould] use an algorithm proposed by Shirley et al. [SC97] to map unit square
coordinates to a circle. It is possible to morph the resulting coordinates to form
arbitrary n-gons, effectively simulating different apertures [Soul3|. As for the num-
ber of samples, both Sousa et al. [Soul3] and Jimenez et al. [Jim14] use kernels
with 49 samples, which seems to be a reasonable number on modern graphics hard-
ware. A visualization of the filter kernel is shown in figure [3.7

3.2 Depth of Field 24

Fig. 3.7. The 49 sample filter kernel used for depth of field.

3.2.4 Simple Depth of Field
Overview

A very simple depth of field algorithm, similar to the motion blur algorithm dis-
cussed in subsection |3.1.3|can be created by scaling a 2D filter kernel by the current
pixel’s circle of confusion. However, similar to the motion blur, this technique leads
to discontinuities in the blur when blurry foreground objects are in front of sharp
background objects. The blur does not extend past the foreground object but in-
stead ends abruptly at the silhouette. A very simple way to combat this artifact
is to blur the circle of confusion with a weak gaussian blur. Although this intro-
duces a number of other artifacts, it subjectively looks more pleasant. Figure [3.8
illustrates this simple depth of field effect.

Fig. 3.8. A simple bokeh depth of field implementation.

3.2 Depth of Field 25

Implementation

The algorithm is separated into two passes. The first pass takes the blurred circle
of confusion texture and the scene color texture as inputs and applies the filter
kernel twice, once for the near field and once for the far field. The kernel is scaled
by the near field and the far field circle of confusion respectively. Blurring should
be done in half resolution to improve performance and widen the blur radius. This
first pass outputs two textures containing the blurred near field and the blurred
far field. An implementation of this pass is given in listing

1 void simpleDepthOfFieldBlur (vec2 texCoord, vec2 texelSize, float nearCoc,
2 float farCoc, sampler2D nearColorTexture, sampler2D farColorTexture ,
3 out vec3 nearColor, out vec3 farColor)

14

5 nearColor = vec3(0.0);

6 farColor = vec3(0.0);

7

8 for (int i = 0; i < KERNELSIZE; ++i)

9 {

10 vec2 kernelSampleCoord = SAMPLE COORDS|i |;

11

12 vec2 sampleCoordNear = nearCoc * texelSize % kernelSampleCoord;

13 nearColor += texture(uColorTexture, texCoord + sampleCoordNear).rgb;
14

15 vec2 sampleCoordFar = farCoc * texelSize x kernelSampleCoord;

16 farColor += texture(uColorTexture, texCoord + sampleCoordFar).rgb;
17 }

18

19 nearColor *= (1.0 / 49.0);

20 farColor %= (1.0 / 49.0);

21}

Listing 3.9. Implementation of the blur pass of simple depth of field.

The second pass composites the full resolution source image with the blurred near
and far field images. The images are composited back-to-front. The far field image
and the full resolution image are interpolated based on the full resolution circle
of confusion. The same is then done for the near field image and the result of the
previous operation. The implementation for this is given in listing [3.10]

1 vec3 simpleDepthOfFieldComposite(vec2 texCoord, float nearCoc, float farCoc,
2 vec3 fullResolutionColor , vec3 nearColor, vec3 farColor)

3 4

4 vec3 result = mix(fullResolutionColor, farColor, clamp(farCoc, 0.0, 1.0));
5 return mix(result , nearColor, clamp(nearCoc, 0.0, 1.0));

6 }

Listing 3.10. Full resolution source image and blurred half resolution image are
composited.

3.2.5 Sprite-Based Depth of Field
Overview

In stark contrast to scatter-as-gather based algorithms, a depth of field effect can
also be achieved by using sprites [Dem07] [MDI11] [KSS11] [Vali3]. This sprite-
based technique renders a sprite in the shape of a triangle or a quad for every

3.2 Depth of Field 26

pixel in the sharp image. The size of the sprite is scaled by the circle of confu-
sion of the corresponding pixel. The sprite can be textured with an artist defined
texture, allowing for interesting effects. Similar to other depth of field algorithms,
this one also splits the image in near and far field, rendering the sprite in either
one of them, depending on the circle of confusion [KSSI11]. The actual scattering
effect is done by applying a texture to the sprite and tinting it with the color of the
pixel for which the sprite was drawn. Figure|3.9|shows this depth of field technique.

N

Fig. 3.9. A depth of field effect can be achieved by drawing textured sprites for
every pixel.

Implementation

Instancing is used to draw a number of quads equal to the number of pixels in the
image. The position of the pixel for which the quad is drawn is reconstructed from
the gl_InstancelD value. The quad is scaled by the radius of the circle of confu-
sion of the source pixel and moved to the pixel’s position. The pixel color and the
inverse size of the quad are passed to the fragment shader. Sprite based depth of
field uses a near field and a far field texture. These textures could be created by
using multiple render targets or drawing all quads twice. A texture atlas is used
instead. The near field is placed in the left half of the target texture and the far
field in the right half. Quads are positioned in either half, depending on their circle
of confusion. Bleeding between the images is avoided by sending a flat value to
the fragment shader, indicating to which side of the atlas the quad belongs. The
fragment shader uses this information to clip the quad at the border. Figure [3.10
illustrates the atlas containing both textures.

3.2 Depth of Field

27

Fig. 3.10. The near field texture is stored in the left half and the far field texture
is stored in the right half of the texture atlas.

Quads with a size of less than a pixel are moved outside the viewport, stopping
further processing. This is a performance optimization and needs to be accounted
for during composition. Vertex shader code for this stage is given in listing [3.11}

© 00 O Ut i W

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

vecd spriteDepthOfFieldVertexShader (vec2 position, vec2 texCoord,

int instancelD , int width, int height, float coc,
sampler2D colorTexture, out float near, out vec4 color)

vec2 pixelPos;
pixelPos.x = instancelD \% width;
pixelPos.y = instancelD / height;

color = vec4(texture(colorTexture, texCoord).rgb, 1.0 / (coc % coc));
near = coc > 0.0 ? 1.0 : 0.0;

// scale by coc
position x= coc;

// move to pixel position
position += pixelPos;

// scale to pixel size
position %= (1.0 / vec2(width, height));

// position on atlas
position = position % vec2(1.0, 2.0) — vec2(near, 1.0);

// kill primitive if coc is too small
return vec4(position, coc < 1.0 ? —2.0 : 0.0, 1.0);

Listing 3.11. Vertex shader code for sprite-based depth of field.

The fragment shader samples the bokeh texture and multiplies the passed in pixel
color and inverse sprite area with the color of the texture sample. This tints the
color by the supplied texture and allows for arbitrary bokeh shapes using the alpha
channel as mask. If the quad is leaking onto the other image inside the atlas, the
alpha value is set to zero, effectively clipping the quad at the border. Color and
alpha channel are written additively into the framebuffer. Fragment shader code
for this stage is given in listing [3.12]

3.2 Depth of Field 28

1 wvecd spriteDepthOfFieldFragmentShader(vec2 texCoord,

2 sampler2D spriteTexture, float near, vec4d color)

3 A

4 vecd spriteColor = texture(spriteTexture, texCoord).rgba;
5 vecd result = vecd4(color * spriteColor.rgb, spriteColor.a) x color.a;
6

7 float leftSide = texCoord < 0.5 7 1.0 : 0.0;

8 result x= vNear =— leftSide = 1.0 : 0.0;

9

10 return result ;

11}

Listing 3.12. Fragment shader code of sprite-based depth of field.

Compositing is done similar to the depth of field algorithm presented in subsection
[3.2.4] except that the color channels of the near and far textures are divided by
their alpha channel before doing the linear interpolations. The color value repre-
sents a weighted sum, where the alpha value is the total weight. Dividing be alpha
normalizes the sum. At this stage it becomes apparent why alpha is weighted by
the sprite area. Doing this is a means of preserving energy when scattering the
color of a pixel over an area. Neglecting to account for the sprite area causes harsh
discontinuities in the blur and introduces error into the final image by adding en-
ergy. In the vertex shader, quads with a very small circle of confusion were skipped.
This must be accounted for during compositing. This can be done by downsam-
pling the full resolution source texture and using the downsampled color where
required. An implementation of this is given in in listing [3.13]

1 wvec3 spriteDepthOfFieldComposite(vecd nearField, vecd4 farField,
2 vec3d fullResColor, vec3 halfResColor, vec2 coc)

3 {

4 farPlane.rgb = farPlane.a > 0.0 7

5 farPlane.rgb / farPlane.a : farPlane.rgb;

6 nearPlane.rgb = nearPlane.a > 0.0 7

7 nearPlane.rgb / nearPlane.a : nearPlane.rgb;

8

9 vec3 color = mix(fullResColor, halfResColor ,

10 clamp (max(coc.x, coc.y), 0.0, 1.0));

11 color = mix(color, farField.rgb, clamp(farField.a, 0.0, 1.0));
12 color = mix(color, nearField.rgb, clamp(nearField.a, 0.0, 1.0));
13 return color;

14}

Listing 3.13. The full resolution source texture and the blurred half resolution
textures are composited.

3.2.6 Scatter-as-Gather Depth of Field
Overview

The rationale behind the motion blur algorithms discussed in subsection and
subsection [3.1.5] also applies to depth of field. While motion blur scatters a pixel
only along a single direction, depth of field blurs pixels in all directions. Thus it
is necessary to expand the scatter-as-gather approach to two dimensions. Similar
to motion blur, the image is divided into tiles, where each tile holds the maximum
circle of confusion that may overlap pixels inside the tile. Again, the image is split

3.2 Depth of Field 29

into near field and far field, based on the circle of confusion. Both images are then
processed together. Processing can be skipped if the tile texture indicates that no
other pixel blurs over the center pixel. A filter kernel is then used to sample pixels
from the local neighborhood. The contribution of each sample is determined based
on its circle of confusion. Figure [3.11] shows the scatter-as-gather principle in two
dimensions. Samples contribute only if their circle of confusion reaches over the
center pixel. A second pass is employed to fill holes inside the bokeh shapes pro-
duced by the first pass. In a final pass, the near and far field images are composited
with the full screen image [Soul3|. Figure illustrates the effect of this depth

of field technique.

Fig. 3.11. Scatter-as-gather in two dimensions. Source: [Jim14], modified.

Fig. 3.12. Scatter-as-gather depth of field applied to the scene.

Implementation

Generation of the tile texture is done similar to the motion blur techniques dis-
cussed in subsection and subsection [3.1.5] The input circle of confusion tex-

3.2 Depth of Field 30

ture and the resulting tile texture are shown in figure [3.13]

Fig. 3.13. The circle of confusion texture (left) is used to generate a tile texture
(right), holding the maximum circle of confusion of every tile.

To reduce bandwidth and improve the smoothness of the blur, the source color tex-
ture is downsampled to half resolution using a bilateral filter. The image is split
into near and far plane, depending on the sign of the circle of confusion of each
pixel. When creating the near plane image, full screen pixels belonging to the far
plane are ignored. The final circle of confusion value associated with the resulting
half resolution pixel is the maximum value of the four source pixels. The down-
sampled images are premultiplied by their circle of confusion. The CoC is then
stored in the alpha channel. These measures significantly reduce leaking of sharp
foreground objects. Since the circle of confusion is a unit of full resolution pixels
and the effect is done in half resolution, it must be divided by two to preserve the
radius. The effect is implemented using floating point textures with four channels
and 16 bits per channel. This ensures enough precision for the source image which
likely contains large values.

The main blur pass processes both images together. Processing can be skipped if
the tile texture indicates that the maximum circle of confusion in the tile is zero.
Using precomputed sampling locations (see subsection [3.2.3)), samples are taken
from the downsampled images and weighted according to their circle of confusion.
Near and far field are weighted differently. Sousa et al. [Soul3| suggest using the
scatter-as-gather approximation only on the near field. Near field sample weight-
ing compares the distance between the center pixel and sample with the circle of
confusion of the sample. Jimenez et al. [Jim14] propose using the number of rings
in the kernel instead of pixels as unit during weighting. This allows implementing a
smooth falloff, avoiding harsh discontinuities. It is important to account for energy
conservation, especially in the near field. Taking energy conservation into account
is as simple as dividing the sample weight by the area of its circle of confusion.
The area can be computed using equation [3.12]

areey. = m % CoC? (3.12)

3.2 Depth of Field 31

Failing to consider energy conservation results in unrealistic looking blobs of color
in the near field. This is very noticeable for blurry foreground objects in front of
sharp objects in the background. Near field samples are weighting using the func-
tion shown in listing [3.14]

float weightNearField (float sampleDistance, float sampleCoc,
float pixelToRingScale)
{

float sampleWeight = clamp(sampleCoc * pixelToRingScale —

1
2
3
4
5 sampleDistance * pixelToRingScale + 1.0, 0.0, 1.0);
6

7 sampleWeight *= 1.0 / (PI % sampleCoc * sampleCoc);
8

9 return sampleWeight;

0

1

Listing 3.14. Near field weighting function.

True to the technique proposed by Sousa et al. [Soul3|, far field weighting does
not use scatter-as-gather. Instead the center pixel’s circle of confusion is used to
scale the kernel radius. Samples are weighting using the function given in listing

o. 1ol

float weightFarField (float centerCoc, float sampleCoc)

return (sampleCoc >= centerCoc) ? 1.0 : clamp(sampleCoc, 0.0, 1.0);

}

=W N =

Listing 3.15. Far field weighting function.

Although not as correct as the scatter-as-gather approximation, this still produces
plausible results, presumably because errors in the far field are less noticeable.
These weights are used to produce a weighted sum, which is normalized at the end
of the pass.

Large kernel radii result in undersampling, which manifests itself as visible rings
in the bokeh shape. This artifact can be combated with a second pass in which the
mazx() function is used on the local pixel neighborhood. The kernel for this pass is
a circular 3x3 kernel, scaled by the pixel size. Jimenez et al. [Jim14] suggest using
a median filter instead. However, this is not as fast and was not implemented due
to time constraints.

The compositing pass is run in full resolution and combines the near field, the far
field and the full resolution source image. Near and far field images are divided by
their circle of confusion, undoing the premultiplication done in the downsampling
pass. Compositing is then done in two steps. First, the far field image is composited
with the full resolution image using linear interpolation and the full resolution circle
of confusion as weight. The weight is clamped to the range [0, 1]. The near field is
composited on top of the result of the previous operation. Unlike the far field, the
near field uses the circle of confusion sourced from the near field texture as weight.
This weight is also clamped to the interval [0, 1]. Using the circle of confusion from

3.3 Screen Space Ambient Occlusion 32

the near field ensures that blurry foreground objects bleed over sharp background
objects. Sousa et al. [Soul3| note the importance of using bicubic upsampling to
improve the image quality.

3.2.7 Depth of Field Implementation Considerations

Specular aliasing is an artifact commonly found in real-time rendering, especially
when using physically based rendering. Specular aliasing happens because the pixel
raster undersamples the specular response of distant objects [Karl4]. This leads to
pixels rapidly changing their brightness from frame to frame, causing the impres-
sion of flickering. This flickering is highlighted by depth of field effects, making
the artifact even more objectionable. There are many ways to combat specular
aliasing, one of which is to use post-processing anti-aliasing before the depth of
field effect [Kar14]. The implementation for this thesis uses Subpixel Morphological
Anti-Aliasing (SMAA), developed by Jimenez et al. [JESG12]. SMAA detects edges
and smoothes them. SMAA features an optional temporal filter, using a jittered
projection matrix and temporal coherency to reconstruct subpixel details. Similar
to other post-processing anti-aliasing techniques, SMAA expects tonemapped val-
ues in gamma space as input. Thus, the image is tonemapped and converted to
gamma space using the tonemapping operator suggested by Karis [Karl4]. After
the anti-aliasing pass, the image is then converted back to linear color space and
the tonemapping operator is inverted, producing high dynamic range values. Theo-
retically using anti-aliasing in such a way introduces error because the color values
no longer correspond to the depth values. However in practice, this is only visible
when using temporal filtering, as the jittering produces different depth values each
frame even for a still image.

3.3 Screen Space Ambient Occlusion

3.3.1 Physical Basis and Motivation

Ambient occlusion is the name of a set of techniques aimed at approximating global
illumination. When a surface is lit by a light source, part of the light is absorbed
and part of it bounces off of it. Some of these light rays find their way directly to
the observer. This is called direct illumination. Other rays bounce onto different
surfaces which again absorb and reflect a certain ratio of the incoming light. After
a number of bounces, a fraction of the light might reach the observer. This is called
indirect illumination. Figure illustrates this concept.

Algorithms and techniques that compute or approximate indirect illumination are
commonly referred to as global illumination (GI). Calculating GI in real-time is
difficult and remains a problem of active research. A number of algorithms have
been developed that approximate select aspects of GI in real-time, ambient occlu-
sion being one of the most well known. Ambient occlusion techniques compute the

3.3 Screen Space Ambient Occlusion 33

> >

Fig. 3.14. Direct illumination (left) and indirect illumination (right).

probability of point P to be hit by indirect light rays originating from other sur-
faces. Properly applying ambient occlusion to a scene gives the viewer an increased
perception of depth and gives cues on the relation of objects to one another. Es-
sentially it makes objects ”stick to the ground”. Figure |3.15|illustrates this effect.

Fig. 3.15. Without ambient occlusion, objects do not look connected (top left).
Adding ambient occlusion gives visual cues about spatial relations between objects
(top right). Visualization of the ambient occlusion term (bottom).

The definition of ambient occlusion can be derived from the rendering equation,
a simplified version of which is shown in equation , where L,(w,) is the light
exiting from a (implicit) point P towards direction w,. This light is the sum of
the emitted radiance L.(w,) and the integral of incoming radiance L;(w;) from
direction w; at P over the hemisphere. The incoming radiance is weighted by the
bidirectional reflectance distribution function (BRDF) f,.(w;, w,). (n-w;) is a weak-

3.3 Screen Space Ambient Occlusion 34

ening factor based on incident angle.

Lo(wo) = Le(wo) + /Q fr(wiywo) Li(w;) (n - w;)dw; (3.13)

Ambient occlusion techniques assume a lambertian BRDF (p?d) and that there is
no emission, resulting in equation [3.14]

Lo(w,) =0+ / ﬁle(wl)(n - w;)dw; (3.14)

0 T
Further assuming that the scene is illuminated by a constant white dome and
that there is only one bounce of light results in equation [3.15, L;(w;) has been
replaced with a constant factor, simulating a constant hemispherical light. A new

term V' (w;) has been added, which determines the visibility for a given direction.
V(w;) is defined in equation [3.16]

Ly(w,) = p—dV(wi)l(n - w;)dw; (3.15)

n T

Vi) = {1, if w; hits the sky

. (3.16)
0, otherwise

Rearranging the terms yields equation [3.17] the definition of ambient occlusion.

Lo(ws) = pd% /Q V(i) (n - wi)d; = pdVi (3.17)

According to this definition, ambient occlusion algorithms integrate the cosine
weighted visibility V' (w;) of each direction w; inside the hemisphere oriented around
the normal n at P.

The result of the ambient occlusion computation is a probability in the range [0,
1], which contrary to the name actually models visibility, not occlusion. Visibility
and occlusion can be trivially converted into one another as shown in equation
and This is of relevance because some techniques discussed in this thesis
initially compute occlusion and convert it to visibility in a later step.

visibility = 1 — occlusion (3.18)

occlusion = 1 — visibility (3.19)

3.3 Screen Space Ambient Occlusion 35

Recalling the assumptions made above, albedo (pd) multiplied by ambient occlu-
sion (V3) is the ground truth lighting for the case of:

1. A lambertian surface.

2. No emission.

3. A constant white dome illuminating the scene.
4. A single bounce of light.

This is almost always not the case in real scenes but is a sufficient approximation.
The visibility value computed by ambient occlusion techniques should be applied
to the indirect diffuse lighting term, since a lambertian surface was assumed. The
indirect specular term should be modulated by a specular occlusion term. Apply-
ing ambient occlusion only to the indirect diffuse term implies that it cannot be
applied as a pure post-processing effect, since it must have been already computed
when lighting the scene. However, this is sometimes disregarded due to artistic
reasons and ambient occlusion is applied to all light terms, including direct illu-
mination.

The question then remains how to efficiently evaluate and integrate the visibility
term V(w;) in real-time. This is difficult as it requires a description of the scene
and a way to integrate over the hemisphere. The desire for good looking ambient
occlusion in real-time has spawned a number of algorithms working in screen space,

called Screen Space Ambient Occlusion (SSAO).

3.3.2 Original Algorithm
Overview

The first game to feature SSAO was Crysis made by Crytek in 2007 [Kaj09]. Am-
bient occlusion is usually calculated by tracing rays in random directions inside
a hemisphere centered around the normal of a point P, for which the occlusion
is to be computed. If a ray hits geometry, P gains occlusion from that direction.
However this process is not suitable for real-time computation on modern graph-
ics hardware. This is primarily because a complete scene description is needed
against which to test the rays, which does not map well to current graphics chips.
Additionally the large number of rays to trace for a convincing effect poses another
problem. SSAO solves both problems using approximations. The important contri-
bution is that ambient occlusion is computed using only screen space information
sourced from the depth buffer. The depth buffer holds a partial scene description
and can be easily used as a texture in a shader. The second major problem, the
large number of rays, is solved by not tracing rays at all. Instead, occlusion is
computed as the ratio of empty space to geometry around P. The algorithm de-
vised by Crytek also does not rely on normals and instead sources all information
exclusively from the depth buffer. This has the benefit of avoiding taking addi-
tional texture samples from a second texture. This also allows to employ SSAO

3.3 Screen Space Ambient Occlusion 36

in an environment where no screen space normals are available, e.g. in a purely
forward renderer. The texture produced by SSAO holds values in the range [0, 1],
where higher values mean less occlusion. During lighting calculation the texture
is sampled and the resulting value is applied to the indirect diffuse lighting term.
Figure [3.16] shows the SSAO term.

Fig. 3.16. SSAO computed for a scene of mixed complexity.

Implementation

At the core of SSAO lies the aforementioned occlusion computation based on the
ratio of empty space to geometry. This is done using a spherical kernel centered
around point P. The kernel places samples randomly inside a sphere, where most
samples are concentrated near the center. This effectively simulates distance atten-
uation by reducing the weight of occluded samples further away. Ambient occlu-
sion is then calculated by taking the ratio of samples inside geometry to samples
outside geometry. Specifically, samples are evaluated in a loop and their results
averaged, producing the ambient occlusion at P. In a correct simulation only the
hemisphere centered around the normal of P would be considered. However due
to using depth buffer information only, the normal is not available and as such the
technique places samples inside a sphere instead of a hemisphere. Alternatively,
a normal could be computed using the finite difference method, albeit doing so
requires additional samples, further slowing down the already bandwidth bound
algorithm. The spherical kernel is not scaled dependent on scene depth or similar
parameters. Instead it is applied purely in screen space. The consequence of this
is that ambient occlusion is calculated for small nearby foreground features and
large distant background features alike. The sample positions of the kernel are com-

3.3 Screen Space Ambient Occlusion 37

puted on the fly in the shader. The original implementation for Crysis used only
16 samples. When using such a low number of samples without further measures,
the resulting image shows unpleasant looking banding. A commonly used trick to
combat banding is the usage of noise, which in the case of SSAO is introduced as
random rotations applied to the kernel. These random rotations are sourced from
a precomputed four-by-four texture holding random vectors with three elements.
The texture is tiled over the image in such a way, that every four pixels the same
rotation is used. The resulting image now displays noise instead of banding, which
is preferable but still not optimal. The repeating pattern of the noise is clearly
visible in figure 3.1

Fig. 3.17. The four-by-four SSAO noise pattern is clearly visible.

In order to remove the high frequency noise in the ambient occlusion texture
produced by the first pass, a second pass is run that blurs the texture using a four-
by-four blur kernel. Care must be taken when blurring to preserve edges. For this
reason the blur considers the depth of all samples and weights samples according
to their depth relative to the center pixel. The implementation for this thesis uses
the weighting function [3.16

1 float bilateralBlurWeight (float centerDepth, float sampleDepth)

2

3 float weight = abs(sampleDepth — centerDepth) / (centerDepth % 0.1);
4 return clamp (1.0 — weight, 0.0, 1.0);

5 }

Listing 3.16. Bilateral weighting function for SSAO blur.

This function allows samples with a maximum depth difference of 10 % to the cen-
ter pixel depth, which is useful when looking at a plane at an angle, e.g. looking

3.3 Screen Space Ambient Occlusion 38

down a long corridor. If the weighting is too restrictive, the noise is not prop-
erly eliminated and if it is too lenient, ambient occlusion will bleed over edges.
Applying the technique as described will yield ambient occlusion halos around
foreground objects. The reason for this is that the depth buffer is not an accurate
description of the scene as information about objects behind the frontmost object
is lost. When samples of kernels belonging to pixels in the background land on
foreground objects, the sample is always occluded, even if there is a large depth
difference between the background pixel and the sample on the foreground ob-
ject. In the original SSAO implementation for Crysis, this artifact was avoided by
weighting each sample by the function in listing

float sampleWeight(float accessibility , float centerDepth, float sampleDepth)

1

2

3 float rangelsInvalid = (centerDepth — sampleDepth) / sampleDepth;
4 return mix(accessibility , 0.5, clamp(rangelsInvalid, 0.0, 1.0));
5

}

Listing 3.17. Sample weighting function for SSAO.

This weighting defaults to a value of 0.5 if the sample is deemed to far away. This
can be explained by considering that the sampling kernel used is spherical. When
applied to a flat surface like a wall, half the samples are inside and the other half
outside of geometry. This means that an ambient occlusion value of 0.5 corre-
sponds to the maximum visibility value achievable using a proper hemispherical
kernel. However, due to using a spherical kernel there are instances where the visi-
bility value exceeds 0.5. Figure |3.18 shows the sampling kernel applied to different
surfaces and illustrates the problem of using a spherical kernel. Half the samples
of the kernel at position P; are occluded, resulting in an occlusion value of 0.5
on a flat surface. Most samples at P, are occluded, causing a darkening effect in
corners. At position P3 fewer samples than at P; are occluded. This has the effect
that compared to the rest of the object, corners appear to be brighter. Although
this is an artifact of the approximation done by using a spherical kernel, it can
be considered desirable as it makes the three-dimensionality of the scene more
apparent [Kaj09].

Fig. 3.18. Visualization of the SSAO kernel on different surfaces.

Since SSAO produces only one value in the range [0, 1] per pixel, a texture with one
channel and 8 bit per texel is sufficient to hold the results. Of course when using
ping-ponging for the subsequent blur, a second texture is required. However, the

3.3 Screen Space Ambient Occlusion 39

implementation for this thesis uses textures with two channels where the second
channel stores the depth. Although depth can also be sourced from the depth
buffer, storing depth with the ambient occlusion value, reduces the texture fetches
in the blur pass by half.

3.3.3 Hemisphere Kernel
Overview

A common modification of the SSAO technique discussed in subsection is
the usage of a hemispherical kernel instead of a spherical one. Since the hemi-
sphere needs to be oriented around the normal, either screen space normals must
be available as texture or additional depth samples must be taken to compute a
normal using the finite difference method. The hemispherical sampling kernel is
shown in figure [3.19] Since ambient occlusion is defined over a hemisphere, using
a hemispherical kernel makes the approximation more accurate. Figure [3.20| shows
the resulting ambient occlusion term.

Fig. 3.19. Visualization of a hemispherical SSAO kernel on different surfaces.

Implementation

The implementation for this thesis uses a deferred environment in which screen
space normals are readily available as part of the geometry buffer. For this reason
the modified SSAO technique sources its normals from the geometry buffer. Con-
trary to the original algorithm, the sample positions of the kernel are precomputed
using a pseudo-random number generator and stored in uniform values. Similar to
the original algorithm most samples are still placed near the center of the kernel,
attenuating the weight of further away occluders. Noise is introduced a second
time when the kernel is rotated. This is done by calculating a tangent basis us-
ing a random vector supplied by a four-by-four texture. The precomputed kernel
samples are then transformed from tangent space to view space. The view space
position of the current pixel is offset using the transformed sample position. The
position computed this way is then projected into screen space, where its coor-
dinate is used as final sample coordinate. The major consequence of this process

3.3 Screen Space Ambient Occlusion 40

Fig. 3.20. The ambient occlusion term calculated with a hemispherical kernel.

is that the kernel is no longer placed purely in screen space but in view space,
making it cover the same radius in world space regardless if the pixel is close or
far away from the camera. Compared to the original technique, this is closer to the
ground truth. Another minor difference is the depth weighting of samples. Samples
are only valid if the geometry they land on is inside the world space kernel radius.
The function is listed in listing [3.18

1 float sampleWeight (float occlusion, float centerViewSpaceDepth,

2 float sampleViewSpaceDepth, float kernelRadius)
3 {

4 float rangelsValid = smoothstep (0.0, 1.0,

5 kernelRadius / abs(centerViewSpaceDepth — sampleViewSpaceDepth));

6 return occlusion * rangelsValid;

7}

Listing 3.18. Sample weighting function for SSAO (Hemisphere).

The noise texture is tiled across the image in the same way as in the original
algorithm. The subsequent blur pass is also identical.

3.3.4 Horizon-Based Ambient Occlusion

Overview

Horizon-Based Ambient Occlusion (HBAQO) was first introduced 2008 by Bavoil et
al. [BSO8] [BSDOS]. It approaches the problem of screen space ambient occlusion
radically different than the two previous techniques discussed in subsection [3.3.2]
and subsection [3.3.3, Bavoil et al. [BSO8] realized that the ambient occlusion in-
tegral over the hemisphere can be split into a double integral of which the inner
integral can by solved analytically. Said double integral can be derived from the

3.3 Screen Space Ambient Occlusion 41

ambient occlusion definition in equation as shown in equation The di-

rection w; is now expressed in polar coordinates.

V=2 /Q V(w) (1 - wi) ooy = ~ /O ’ /0 * V0, 8)|sin(6)|d6de (3.20)

™

The inner integral integrates the occlusion for one direction inside the circle. The
outer integral rotates this slice around, covering the complete hemisphere. HBAO
aligns the hemisphere with the view direction, resulting in a circular projection in
screen space. The inner integral can be computed analytically by calculating the
angle between the view space tangent and the maximum horizon as seen from the
point for which to compute ambient occlusion. Approximating visibility this way
is sufficient as the depth buffer represents a height field, for which it is impossible
to determine all unoccluded directions. Therefore determining the angle described
above is possibly the best way to extract visibility information from a depth buffer
for a certain direction. Figure |3.21] illustrates this reasoning. Using a height field,
it is impossible to know that the directions shown in green are unoccluded.

Fig. 3.21. Information about unoccluded directions (green) cannot be extracted
from a height field. w, is the view vector. Source: [JWPJ16b], modified.

The outer integral is calculated numerically by averaging the occlusion of a fixed
number of directions. The last step is the conversion of occlusion to visibility as
shown in equation [3.18 The technique can be decomposed into the following steps:

1. For each direction find the maximum horizon.
2. Compute the occlusion based on the angle between tangent and horizon.
3. Sum the occlusion of all directions and average the result.

Figure [3.22] illustrates the ambient occlusion term calculated with HBAO.

Implementation

Since HBAO calculates ambient occlusion for a hemisphere in view space, its screen
space projection must be determined first. Due to being aligned with the Z-axis in

3.3 Screen Space Ambient Occlusion 42

\ -l |/ {

Fig. 3.22. The ambient occlusion term calculated with HBAO.

view space, the hemisphere can be approximated as a disk. The function in listing
demonstrates how to calculate the disk radius in pixels. Note that the HBAO
implementation for this thesis is based on NVIDIA’s Direct3D SDK 11 implemen-
tation of HBAO and therefore uses a left-handed coordinate system, which means
that the sign of the z-component is flipped.

1 float projectHemisphereToDisk (float radius, float viewSpaceDepth,
2 float width, float height, float fovy)

3 1

4 float aspectRatio = height / width;

5 float focalLength = 1.0 / tan(fovy % 0.5) % aspectRatio;

6 float radiusUV = 0.5 * radius x focalLength / viewSpaceDepth;
7 float radiusPix = radiusUV % vec2(width, height);

8 return radiusPix;

9 }

Listing 3.19. Projecting the hemispherical kernel from view space to screen space.

At this point further processing can be canceled if the computed radius is less
than a pixel. Conversely, if the radius is large enough, the step size and number of
samples is computed. The maximum kernel radius should be limited as otherwise
geometry very close to the camera would warrant kernel radii spanning the whole
image, severely reducing performance due to texture cache thrashing. Further op-
timization can be done here by clamping the number of samples to the radius
length in pixels. Doing this avoids sampling the same pixels multiple times. An-
other item of interest is that the per pixel randomization that is usually employed
by SSAO algorithms is introduced at this point. Similar to previous algorithms,
random values are supplied by a four-by-four texture that is tiled over the image.
If the calculated number of steps is larger than the maximum number of steps, a
random value is used to introduce jittering into the kernel.

3.3 Screen Space Ambient Occlusion 43

HBAO requires per-pixel normals. However, unlike the SSAO implementation dis-
cussed in subsection [3.3.3] HBAO sources its normals from the depth buffer using
the finite difference method. More precisely, it calculates the tangent basis vectors.
The choice of whether to use screen space normals from the geometry buffer or
to reconstruct them from the depth buffer is primarily an artistic one and will be
discussed later.

Having computed the kernel radius, the sample placements and the tangent basis
vectors, the actual ambient occlusion calculation can begin. Solving the double
integral can be naturally expressed using a loop, evaluating a different direction
at each iteration and summing its occlusion. Determining the direction is easily
done by computing it on the unit circle using the cosine and sine functions. The
direction obtained this way is then rotated by a random angle. The sine and cosine
values of the matrix expressing this rotation are precomputed and passed as part
of the random texture to the shader.

The inner integral is evaluated for each direction. The view space tangent vector of
each direction is computed using the previously calculated tangent basis vectors.
Searching for the maximum horizon is then done using the angle of the tangent
vector from the view space axis as a starting point. For each sample, its view space
position is calculated. If it lies within the kernel radius and represents a higher
horizon than the previous maximum horizon, the occlusion cast by this horizon is
added to the total ambient occlusion. Horizon search is illustrated in figure [3.23]
The black line represents the one-dimensional height field and points Sy, Si, S9
and S5 the sample locations. Note that S; lies below the previous maximum hori-
zon and therefore does not cast any occlusion.

Occlusion is calculated as shown in listing

1 float calculateAo(float sinOfNewHorizon, float sinOfOldHorizon)
2 A

3 return sinOfNewHorizon — sinOfOldHorizon;

4}

Listing 3.20. Analytical calculation of ambient occlusion.

The occlusion value calculated this way is additionally attenuated based on the
distance of the sample to the center point. As the function parameters in listing
imply, the maximum horizon value is updated with the new horizon and used
in the next iteration as previous horizon.

The last step of the ambient occlusion calculation is to average the previously
computed occlusion and invert it to obtain the visibility value that is later used
during lighting. Optionally the visibility value can be raised to a power to increase
the effect’s visual impact. Similar to the previous two discussed SSAO techniques,
the randomness introduced by the tiled four-by-four random textures results in

3.3 Screen Space Ambient Occlusion

44

ZA

ZA

~—

~~

_—
sampling direction

E——
sampling direction

R ———r—
sampling direction

-ZA -Z4 -Z4

—_— —
sampling direction sampling direction

—_—
sampling direction

Fig. 3.23. Horizon search with four steps (left to right and top to bottom). P is
the point to be shaded and S; are the sample locations. Every found horizon is
highlighted in green. Source: [BSO§|, modified.

a visible noise pattern. This is solved using the same blur pass as described in

subsection 3.3.2

3.3.5 Ground-Truth Ambient Occlusion
Overview

The development of Ground-Truth Ambient Occlusion (GTAO) was motivated
by the desire to compute accurate screen space ambient occlusion, closely match-
ing the ground truth and fast enough to run in about 0.5 milliseconds on consoles
[JWPJ16a] [JWPJ16Dh]. Fundamentally it builds on Horizon-Based Ambient Occlu-
sion, where visibility is computed analytically, based on a horizon search. Contrary
to HBAO, horizon search is done on a 180° slice, as opposed to a 90° slice. For each
slice, the maximum horizon is searched for in in both directions. The view vector
serves as the spherical integral axis, which is why horizons can be in the negative
view hemisphere. Therefore horizon search must be done on the whole sphere. The
maximum horizons are later clamped to the normal aligned hemisphere. Unlike
some other SSAQO algorithms such as HBAO, GTAO does not do any per-sample
attenuation. This is because it is not possible to match ground truth renderings
with per-sample attenuation. Not using attenuation also allows to integrate the
inner integral with respect to the view vector rather than the view-space tangent
plane. This in turn halves the number of integrals, reducing computations since
calculations can be shared. Integrating from view vector to horizon means that
GTAO computes visibility instead of occlusion. Figure shows the reference
frame for GTAQO. The horizons #; and 65 are searched for in both directions.

3.3 Screen Space Ambient Occlusion 45

Fig. 3.24. GTAO reference frame. w, is the view vector, #; and 6, are the horizon
angles and ¢ is the angle around the integration axis. Source: [JWPJ16b], modified.

The original HBAO technique employs uniform weighting of visibility, disregarding
the cosine term in the ambient occlusion definition in equation [3.17} Since GTAO
is concerned with producing accurate values, it is necessary to account for this.
The double integral of visibility as computed by GTAO is shown in equation [3.21
0 and @ are w; expressed in polar coordinates and ~ is the angle between the in-
tegral axis (the view vector) and the normal at P projected onto the slice.

1 [P 2
Vy = ;/ / V(0,P)cos(0 —v)|sin(0)|dfdP (3.21)
0 J

Even though GTAO already reduced the number of computations by sharing cal-
culations and integrating only once per slice, integrating the outer integral nu-
merically is still too expensive. GTAO solves this by heavily relying on temporal
coherence, spreading the numerical computation of the outer integral over multiple
frames. Figure [3.25] illustrates the GTAO ambient occlusion term.

Implementation

Similar to HBAO, GTAO also aligns the kernel hemisphere with the view vector.
This means that the disk projection of the hemisphere in screen space can be com-
puted the same way as in HBAO. The implementation for this thesis sources its
normals from depth buffer. Noise is used to jitter the sampling stride and rotate
the directions. This noise can be passed in as uniform values or computed directly
in the shader. The noise is not pseudo-random like the noise used for the previ-
ously discussed SSAO algorithms. As has been already hinted at, GTAO heavily
relies on temporal coherency. Therefore the noise has a spatial component and a
temporal component. Listing |3.21| shows how the noise is computed.

3.3 Screen Space Ambient Occlusion 46

Fig. 3.25. The ambient occlusion term calculated with GTAO.

1 // x = spatial direction / y = temporal direction

2 // z = spatial offset / w = temporal offset

3 vecd getNoise(int frame, ivec2 coord)

4 A

5 vecd noise;

6

7 noise.x = (1.0 / 16.0) * ((((coord.x + coord.y) & 0x3) << 2)
8 + (coord.x & 0x3));

9 noise.z = (1.0 / 4.0) % ((coord.y — coord.x) & 0x3);

10

11 float rotations[] = { 60.0, 300.0, 180.0, 240.0, 120.0, 0.0 };
12 noise.y = rotations[coord \% 6] % (1.0 / 360.0);

13

14 float offsets[] = { 0.0, 0.5, 0.25, 0.75 };

15 noise.w = offsets [(coord / 6) \% 4];

16

17 return noise;

18}

Listing 3.21. A function to calculate noise values depending on time and pixel

position [JWPJIGh].

GTAO computes ambient occlusion only for one slice per frame, which reduces the
core of the algorithm to a single loop searching for the maximum horizons in both
directions of the slice. Horizons can be computed trivially using the function in
listing [3.22]

1 float computeHorizon(vec3 centerViewSpacePos, vec3 sampleViewSpacePos)
2 {

3 vec3 D = normalize (sampleViewSpacePos — centerViewSpacePos);

4 vec3 V = —normalize (centerViewSpacePosP);

5 return dot(V, D);

6 }

Listing 3.22. Calculation of potential new horizons during horizon search.

3.3 Screen Space Ambient Occlusion 47

Although no per-sample attenuation is used, the horizons of further away samples
can be attenuated by a distance based factor, ensuring ground-truth results on
close geometry and attenuating on far away geometry. Attenuation is done while
computing the horizon and before comparing it with the current maximum. After
completion of the horizon search loop, the cosine of the angle that was obtained
by using the dot() function must be inverted by applying the acos() function on
the maximum horizon angles h; and hy. Having found the maximum horizons,
the integral in equation can be calculated. Jimenez et al. [JWPJ16a] give an
analytic solution, listed in equation [3.23] ~ is the angle between the integral axis
and the normal.

h1 h2
AOgiice = / cos(f — ~y)|sin(0)|d0 + / cos(0 — v)|sin(6)|do (3.22)
0 0

1
AOslice = Z<_COS(2h1 - 7) + COS(F)/) + 2h13m(’y))

+ —(—cos(2hy —) + cos(y) + 2hasin(y)) (3.23)

=~ =

Equation [3.23| assumes that the normal at P lies within the slice, which in general
is not the case. Timonen [Tim13a] showed that the normal can be substituted by
the normal projected onto the slice. This projection is shown in figure [3.26

Fig. 3.26. The normal n does not lie in the plane and must be projected onto it,
yielding the projected normal n,. € is the horizon. Source: [JWPJ16D], modified.

The integral must then be corrected by the length of the projected normal to
be equal to the original assumption of the normal lying withing the plane. The
implementation of GTAO for this thesis derives gamma by applying the acos()
function to the dot product of the integral axis and the (projected) normal. A pit-
fall that was encountered here was that the sign of the angle was lost this way. The

3.3 Screen Space Ambient Occlusion 48

solution was to reconstruct the sign from the sign of the dot product of the pro-
jected normal and the tangent of the slice. Calculation of ~y is shown in listing [3.23]

1 float computeGamma(vec3 samplingDir, vec3 viewDir, vec3 normal)
> |

3 // project normal onto slice plane

4 vec3 planeN = normalize(cross(samplingDir, viewDir));

5 vec3d projectedN = normal — dot(normal, planeN) % planeN;
6

7 projectedN = normalize(projectedN);

8

9 // calculate gamma

10 vec3 tangent = cross(viewDir, planeN);

11 float cosGamma = dot(projectedN , viewDir);

12

13 // reconstruct sign of gamma

14 float gamma = acos(cosGamma) % sign(—dot(projectedN , tangent));
15

16 return gamma;

17}

Listing 3.23. Calculation of .

The introduced noise is removed from the image using a depth aware bilateral blur
similar to the one used for SSAO and HBAO. Since the integration of the outer
integral is spread over multiple frames, a temporal filter must be applied after the
spatial filter to combine the results of previous frames with the current one. The fil-
tered ambient occlusion of the previous frame is found by reprojecting the current
pixel using screen space motion vectors. Calculation of these vectors is discussed
in subsection [3.1.2] Temporally filtered ambient occlusion is then computed from
the previous frame’s temporally filtered ambient occlusion and the current frame’s
spatially filtered ambient occlusion. This is shown in equation [3.24] where « is the
blend factor in the linear interpolation function lerp().

filteredAO, 11 = lerp(filteredAO,,, AOy 41, @) (3.24)

The reprojected ambient occlusion of the last frame does not always correspond
to the same position in world space as the ambient occlusion of the current frame.
This can happen due to camera or object movement and needs to be detected in
order to avoid accumulating incorrect values. Previous values can be discarded if
their coordinate lies outside the frame. When geometry is visible in the current
frame that did not exist in the previous frame, a disocclusion happened. Detect-
ing disocclusions requires the previous frame’s depth buffer to correctly determine
world space positions. As explained when discussing the spatial filter in subsection
[3.3.2) depth is saved in a second channel alongside the ambient occlusion value.
Jimenez et al. [JWPJ16b| suggest using the depth difference between the current
and the previous pixel and the magnitude of the motion vector as a heuristic for
the likeliness of both pixels referring to the same position. The implementation
for this thesis computes world space positions and compares these instead of com-
paring just depth [BA12] [MSWI0]. Even though this requires some additional
matrix multiplications, it seems to be a more robust approach to the problem,

3.3 Screen Space Ambient Occlusion 49

which makes it worth it. Another problem, specific to ambient occlusion, arises
when using temporal filters. Ambient occlusion depends on the surrounding en-
vironment. It is therefore necessary to test if the neighborhood of a pixel still
casts occlusion onto the pixel. Disregarding this leads to trails behind moving ob-
jects because previous ambient occlusion values are not rejected even though the
moving object no longer casts occlusion onto the pixel. Jimenez et al. [JTWP.J16a]
[Jim16] propose using filtered neighborhood clamping, a technique primarily used
in temporal anti-aliasing techniques. Neighborhood clamping examines the local
neighborhood of a pixel and clamps the pixel to the minimum and maximum val-
ues. When using neighborhood clamping with GTAO, a low pass filter is applied
to the neighborhood. This is easily achieved by placing the sample positions be-
tween pixels and using a linear sampler. Jimenez et al. [JWPJ16a|] further suggest
employing a dynamic convergence time, dependent on frame time and converging
faster for fast moving objects. This was disregarded for the implementation of this
thesis because it introduced flickering into the image. A constant « value is used
instead. Of course this value is multiplied with the weighting factors described
above. As a final step, both filtered ambient occlusion and depth are stored in the
result texture, which is used for shading the current frame and as input for the
temporal filter in the next frame. Figure [3.27| shows the ambient occlusion term
before spatial and temporal denoising.

Fig. 3.27. Without the spatial noise reduction, the noise pattern is clearly visible
(left). The result of this operation (right) still needs to be filtered temporally.

3.3.6 Screen Space Ambient Occlusion Implementation Considerations

Except for the original SSAQ, all other SSAO techniques discussed in this thesis
rely on screen space normals. Sourcing these normals from the geometry buffer in
a deferred environment produces incorrect values in most cases. This is due to the
fact that normals are usually interpolated across each triangle. Figure [3.28] illus-
trates the problem. The interpolated normal (gray) differs from the actual normal
(green), resulting in false occlusion as the tangent does not match with the actual
geometry. Using normal mapping adds further deviation to the normals. Normals
produced this way do not correspond to the geometry as defined by the depth

3.4 Measurement Method 50

buffer.

interpolated
normal face
normal

Fig. 3.28. False occlusion is detected in horizon based approaches when using
interpolated normals. Source: [BS08|, modified.

Reconstructing normals from depth buffer yields almost always values that cor-
respond to the actual geometry. The drawback of this approach however is that
ambient occlusion might accentuate the faceted nature of certain meshes.
Deciding for one or the other is an artistic choice. Since precomputed small scale
ambient occlusion can be supplied by a texture, the implementation for this thesis
almost always uses normals reconstructed from the depth buffer.

SSAO techniques are usually bandwidth limited and can profit from comple-
mentary cache-aware techniques such as Line Sweep Ambient Occlusion (LSAO)
[Tim13al, deinterleaved rendering [BJ13] and performing the effect in half resolu-
tion. LSAO computes a data structure allowing efficient horizon search for a given
direction. Deinterleaved Rendering deinterleaves the frame according to the four-
by-four noise pattern commonly used with SSAO. The effect is then computed
seperately on each deinterleaved quarter resolution slice. Since all texture fetches
inside a slice share the same access patterns and cover a greater distance in full
resolution screen space than in the quarter resolution screen space, the texture
cache is used much more efficiently.

Downsampling the image and performing SSAO in half resolution is a commonly
done optimization. SSAO is a low frequency effect, which lends itself to a lower
resolution. Still, care must be taken when downsampling the depth buffer and up-
sampling the SSAO result in order to avoid bleeding the effect over edges. Down-
sampling depth is problematic because averaging the values results in depth values
that do not correspond to any surface in the source image.

Due to time constraints these techniques have not been implemented for this thesis.

3.4 Measurement Method

The framework used to implement the techniques discussed in this thesis encap-
sulates all graphics pipeline state setup and draw calls specific to a shader into
RenderPass and ComputePass objects. An asynchronous OpenGL timer query is

3.4 Measurement Method 51

used to measure the elapsed GPU time of a pass. This includes all API calls neces-
sary for the draw call(s), including binding of textures, framebuffers and changes
of the viewport or per-fragment operations. Measuring this way ensures that all
additional performance cost associated with an effect is accounted for.

The techniques have been tested on two different systems, a desktop computer and
a laptop. The hardware specifications of both systems are listed in table [3.1]

Desktop Laptop

CPU |Intel i5 4690K @4.6 GHz Intel i5 7300HQ @3.5 GHz
GPU| AMD R9 390 8 GB |NVIDIA GeForce GTX 1050 2 GB
RAM 16 GB 8 GB

0S Windows 7 Windows 10

Table 3.1. Hardware specifications of the two test systems.

Automatic benchmarking functionality has been implemented to increase the
reproducibility of the measurements. There are seven predefined camera views
(scenes). Upon starting the benchmark, camera controls are locked to prevent the
user from invalidating the measurements by moving the camera. The benchmark
runs in several passes, measuring the performance of different techniques every
pass. Each pass collects data from 200 frames. When a benchmark pass is com-
pleted, its average timings are automatically written to a file. Time is measured in
milliseconds. All techniques discussed in this thesis consist of multiple intermedi-
ary steps, each of which is encapsulated in either a RenderPass or a ComputePass
object. The performance of every step is measured separately. The total run time
of a technique is calculated as the sum of all its steps. An overview of the tech-
niques measured at each benchmark pass is shown in table [3.2]

Pass| Motion Blur |Depth of Field|Screen Space Ambient Occlusion
0 Simple Simple SSAO

1 |Single-Direction| Sprite Based SSAO (Hemisphere)

2 Multi-Direction| Tile Based HBAO

3 Multi-Direction| Tile Based GTAO

Table 3.2. Overview of techniques measured at each benchmark pass.

Although measurements have been made for all seven scenes, only two representa-
tive scenes per effect have been picked to discuss in this thesis. All measurements
were made at a resolution of 1920x1080.

3.4 Measurement Method 52

3.4.1 Motion Blur Test Setup

The cost of motion blur can be folded with other fullscreen passes, such as the
tonemapping pass. Motion blur is executed in the same shader as, and immediately
before tonemapping and gamma correction. Unfortunately, this setup prohibits
taking accurate measurements of motion blur performance. The performance im-
pact of motion blur usually depends on magnitude and direction of the per-pixel
velocities. In order to create reproducible results, a constant velocity is written
to the velocity buffer. Therefore motion blur has been moved to a separate pass
for the purpose of measuring. Figure [3.29) shows the constant velocity used while
benchmarking.

Fig. 3.29. Using a constant velocity ensures reproducibility.

Although this does not reflect real-world performance, it allows for a fair compar-
ison between different techniques. Having constant velocities makes motion blur
independent of scene complexity. For this reason motion blur results are discussed
for only one scene.

3.4.2 Depth of Field Test Setup

Depth of field is implemented with an instantaneous auto focus. The distance of
the focal plane is calculated as the linear depth of the pixel in the center of the
image. The radius of the circle of confusion increases in both near and far field
when the focal plane is close. As an increased circle of confusion radius results in an
increased blur radius and thus a larger performance hit, one of the representative
scenes has been selected to serve as a worst case scenario. The other scene has been
selected for its average depth of field strength, resulting in an average performance
hit. The focal ratio is available as a parameter in the graphical user interface. Since
the circle of confusion radius directly depends on the focal ratio, care was taken
to take all measurements with a constant focal ratio of 1.4.

3.4.3 Screen Space Ambient Occlusion Test Setup

Most screen space ambient occlusion techniques discussed in this thesis dynam-
ically scale the sampling kernel to be uniform in view space. This means that

3.4 Measurement Method 53

the screen space distance covered by the kernel increases with decreasing distance
to the camera. Similar to depth of field and other techniques relying on a sam-
pling kernel, a larger kernel size results in worse performance due to texture cache
misses. One of the two chosen representative scenes contains a balanced mix of
close and further away geometry, while the other contains mainly close geometry.
These criteria should allow to reason about both the typical and the worst case
performance impact. The parameters used during the benchmark are shown in ta-
ble 3.3 for SSAO (Hemisphere), table |3.4] for HBAO and table 3.5 for GTAO. The
parameters were chosen with the goal of producing similar visual results. Note that
SSAO (Hemisphere) and HBAO use the same number of samples. Since GTAO is
temporally filtered, it uses less samples then the other techniques.

Parameter ‘ Value
Kernel Size 64
Kernel Radius| 2.0

Table 3.3. SSAO (Hemisphere) parameters used during the benchmarks.

Parameter Value
Directions 8
Steps 8
Radius 1.0
Maximum Pixel Radius| 256

Table 3.4. HBAO parameters used during the benchmarks.

Parameter ‘ Value
Steps 8
Radius 2.0

Maximum Pixel Radius| 256
Table 3.5. GTAO parameters used during the benchmarks.

4

Results and Discussion

4.1 Motion Blur

Figure 4.1] gives a visual overview over the three motion blur techniques discussed
in this thesis. When comparing the different techniques with respect to their visual
quality, the simple motion blur algorithm looks least convincing due to the edge
discontinuities. Single-direction scatter-as-gather looks slightly better than multi-
direction scatter-as-gather, because the latter spreads all samples evenly along two
directions. In this image there is only one dominant velocity direction, causing the
multi-direction motion blur technique to waste samples on a secondary direction
and sampling the main direction with only half the samples. However, this is not
very noticeable under motion. Conversely, the tile discontinuity artifacts present in
single-direction motion blur are not very noticeable under motion either. Whether
situational undersampling is worse than visual artifacts is subjective.

Fig. 4.1. Simple motion blur (top left), single-direction motion blur (top right)
and multi-direction motion blur (bottom) applied to the same scene.

4.1 Motion Blur 55

Table and table show the timings of each motion blur technique on the
desktop test system and the laptop test system respectively. The velocity correc-
tion pass is a constant cost in all techniques. The two tiling passes necessary for
the scatter-as-gather motion blur techniques make up only a fraction of the total
time spent on the algorithm. The run time of all three techniques is dominated
by the blur pass, presumably due to the large number of texture fetches done in
full resolution. Both scatter-as-gather algorithms spend considerably more time in
the blur pass then the simple motion blur algorithm. Since all three techniques
take the same maximum number of samples and have a similar memory access
pattern, this might hint at possible performance improvements achievable through
optimization. Multi-direction scatter-as-gather motion blur is slightly faster in the
blur pass than single-direction scatter-as-gather. This is unexpected because both
algorithms are very similar. Although outside the scope of this thesis, extensive
profiling and examination of shader code disassembly might be helpful in finding
an answer to this phenomenon.

Simple |Single-Direction|Multi-Direction
Velocity Correction 0.0701084| 0.0698048 0.0699729
Velocity Tile Max n/a 0.0756721 0.0759832
Velocity Neighborhood Tile Max| n/a 0.00705657 0.00704838
Blur 0.65022 2.17453 2.05213
Total 0.709724 2.32309 2.19394

Table 4.1. Motion blur timings on the desktop test system. All timings are in
milliseconds.

Simple [Single-Direction|Multi-Direction
Velocity Correction 0.354058 0.353593 0.354268
Velocity Tile Max n/a 0.195535 0.195888
Velocity Neighborhood Tile Max| n/a 0.00498672 0.0053576
Blur 0.995369 3.55847 3.40387
Total 1.33069 4.10491 3.93877

Table 4.2. Motion blur timings on the laptop test system. All timings are in
milliseconds.

Compared to one another, all techniques have the same relative cost, regardless
of the test system. This indicates that the relative performance of all techniques
is independent of hardware. When deciding for a technique, implementation ef-
fort should also be considered. The simple motion blur algorithm produces ac-
ceptable results and is trivial to implement. Especially in light of its quick run
time, this technique might be useful on weaker hardware or in a time constrained
environment. While offering a significantly higher quality, both scatter-as-gather

4.2 Depth of Field 56

algorithms incur a greater performance impact and are more difficult to imple-
ment. Since both techniques are visually almost equal, choosing between them
is subjective. However, the implementation of multi-direction scatter-as-gather is
measurably faster and behaves more stable when taking a still image. Further-
more, multi-direction scatter-as-gather will most likely be the preferred technique
going forward, as increasing hardware performance will make spending samples on
multiple directions more feasible.

4.2 Depth of Field

Figure and figure show the three different depth of field techniques dis-
cussed in this thesis. Visually, all three techniques look very similar, which is due
to the fact that great care was taken to implement a consistent effect. Still, there
are subtle visual differences between the different approaches. Looking closely at
the bokeh shape of the simple depth of field implementation reveals undersampling
artifacts in the form of visible rings. These rings only manifest themselves when the
circle of confusion reaches the maximum radius. Scatter-as-gather depth of field
reduces undersampling artifacts by employing a seperate fill pass. Unfortunately,
this fill pass grows the bokeh shape slightly, making the blur a little stronger than
in the other techniques. However, this is a matter of preference and can be solved
by using a median filter instead of a maximum filter. Another unpleasant artifact
visible in the simple depth of field technique are halos around near field objects,
such as the leaves of the plant in figure [£.2] This can be attributed to a lack of
leak reduction measures and the indiscriminate blurring of the circle of confusion
texture.

Sprite based depth of field naturally does not suffer of undersampling. Correctly
implemented, it is potentially one of the most realistic ways to simulate bokeh
depth of field, as it models the blur conceptually true to reality. However, correctly
implementing sprite based depth of field is difficult because sprites approaching a
radius of less then a pixel are problematic to rasterize and thus need to be handled
separately. The implementation of sprite based depth of field suffers from slight
artifacts at the transition from rasterized sprites to downsampled color. Investing
more time into this technique would most likely solve this problem.
Scatter-as-gather depth of field is the most advanced of all three depth of field
techniques presented here. It displays almost no leaks, thanks to careful down-
sampling and circle of confusion premultiplication. Since the circle of confusion is
clamped to a maximum radius, specially tweaked for this technique, undersam-
pling artifacts are not visible. Visually, this algorithm is the most impressive of
the three.

Table and table show measurements for the first depth of field test scene,
table and table for the second. Similar to motion blur, all depth of field
techniques share a common pass. The compute pass calculating the circle of con-
fusion texture incurs a fixed performance impact, regardless of technique. Overall,
the simple depth of field technique is the fastest, performing slightly faster than

4.2 Depth of Field 57

Fig. 4.2. Simple depth of field (top left), sprite based depth of field (top right)
and scatter-as-gather depth of field (bottom) applied to the first test scene.

Fig. 4.3. Simple depth of field (top left), sprite based depth of field (top right)
and scatter-as-gather depth of field (bottom) applied to the second test scene.

4.2 Depth of Field 58

scatter-as-gather depth of field. Although that was expected, it is remarkable how
close scatter-as-gather depth of field is to the simple technique. Comparing the
timings of the two algorithms shows that the blur pass of scatter-as-gather depth
of field is considerably and consistently faster than the simple depth of field blur
pass. This performance advantage can be explained by the fact that scatter-as-
gather depth of field leverages its tile texture to dynamically skip the blur, saving
memory bandwidth and time. Performance seems to be largely independent of
the circle of confusion radius, provided that it is clamped to a sensible maxi-
mum. This also holds true for the simple depth of field technique. Contrary, sprite
based depth of field heavily depends on the circle of confusion radius and thus on
scene complexity, making it difficult to anticipate the performance impact. This
becomes especially apparent when comparing the timings of table and table
[4.5] Furthermore, sprite-based depth of field runs slower than the other techniques.
Its performance is dominated by the sprite render cost. Performance deteriorates
with increasing circle of confusion, presumably due to the massive overdraw.

Simple |Sprite Based|Scatter-as-Gather

CoC Compute 0.0903024| 0.090318 0.090318
CoC Blur 0.0701862 n/a n/a

CoC Tile Max n/a n/a 0.0812329
CoC Neighborhood Tile Max| n/a n/a 0.00690655
Color Downsample n/a n/a 0.115736
Blur 0.944527 | 3.72753 0.784767

Fill n/a n/a 0.170156
Composite 0.1615 0.227597 0.290051
Total 1.45175 4.03517 1.53126

Table 4.3. Depth of field timings of the first test scene on the desktop test system.
Time is measured in milliseconds.

Simple [Sprite Based|Scatter-as-Gather
CoC Compute 0.201104| 0.201014 0.200751
CoC Blur 0.191823 n/a n/a
CoC Tile Max n/a n/a 0.137517
CoC Neighborhood Tile Max| n/a n/a 0.00724128
Color Downsample n/a n/a 0.319107
Blur 1.1224 8.4519 1.0932
Fill n/a n/a 0.232149
Composite 0.552918| 0.521314 0.574464
Total 2.32298 | 9.16142 2.554464

Table 4.4. Depth of field timings of the first test scene on the laptop test system.
Time is measured in milliseconds.

4.2 Depth of Field 59

Simple |Sprite Based|Scatter-as-Gather
CoC Compute 0.0901254| 0.0903425 0.0903269
CoC Blur 0.0701788 n/a n/a
CoC Tile Max n/a n/a 0.0812195
CoC Neighborhood Tile Max| n/a n/a 0.00691027
Color Downsample n/a n/a 0.115768
Blur 0.938762 | 1.66884 0.767834
Fill n/a n/a 0.166112
Composite 0.161367 | 0.233008 0.289897
Total 1.4442 1.97278 1.5105

Table 4.5. Depth of field timings of the second test scene on the desktop test
system. Time is measured in milliseconds.

Simple [Sprite Based|Scatter-as-Gather

CoC Compute 0.20265 | 0.203267 0.203552
CoC Blur 0.191927 n/a n/a

CoC Tile Max n/a n/a 0.139423
CoC Neighborhood Tile Max| n/a n/a 0.00726528
Color Downsample n/a n/a 0.323774
Blur 1.12628 2.0308 1.04904

Fill n/a n/a 0.23133
Composite 0.557372| 0.486538 0.57232
Total 2.33176 | 2.67706 2.51695

Table 4.6. Depth of field timings of the second test scene on the laptop test
system. Time is measured in milliseconds.

Overall, the scatter-as-gather technique seems to be the most viable solution to
fast, consistent and good looking depth of field. Its marginally worse performance
compared to simple depth of field is negligible in light of its high visual quality.
Sprite based depth of field might be useful when aiming for extremely high qual-
ity on good hardware. Another unique aspect of sprite based depth of field is the
ability to use arbitrary textures for the bokeh shape, allowing interesting artistic
effects. The simple depth of field technique is least suited to be used, even for weak
hardware, as its minimal performance advantage does not outweigh its compara-
tively bad quality. It should be noted that individual parts of the techniques leave
room to optimize for performance or visual quality. For instance, the simple depth
of field technique could be enhanced with an additional fill pass similar to the
one used in the scatter-as-gather approach. Additionally, changes to the sampling
kernel and sample weighting functions can have a drastic effect on performance
and visual fidelity.

Generally, scatter-as-gather techniques seem to be a promising approach to the
scatter problem, both in depth of field and motion blur. They provide a higher vi-

4.3 Screen Space Ambient Occlusion 60

sual quality and potentially save performance when computations can be skipped
dynamically.

4.3 Screen Space Ambient Occlusion

Figure and figure |4.5|illustrate the four different implemented screen space am-
bient occlusion techniques applied on the two test scenes. Since GTAO is by design
as close as possible to a ray traced ground truth and because no actual ray traced
solution is available, GTAO will be treated as the ground truth for the purpose
of this comparison. The original SSAO features only very small scale occlusion,
leaving the majority of the image at a default occlusion value of 0.5. Although
this is due to kernel scale, which can be tweaked, restricting the algorithm to 16
samples does not allow for a much larger scale. Modern hardware can handle more
samples easier then hardware from 2007 when SSAO was developed. Other unique
aspects of SSAO are its edge highlighting and independence of view space depth,
causing the same effect on both close by and far away geometry. These details seem
to be considered undesirable, as is evident by their absence in other techniques. A
more modern approach to the original technique is the modified SSAO technique
featuring a higher sample count and a hemispherical view space kernel. The orig-
inal SSAO was included into this comparison not as a serious competitor but for
historical reasons and to illustrate the progress screen space ambient occlusion has
made since then. Compared to the original algorithm, modern SSAO looks much
closer to GTAO. However, in some areas it does not darken the image enough.
This is especially visible under the car and behind the plant pots seen in the first
test scene. HBAO looks even more similar to GTAO. This is presumably because
they are both horizon based techniques. Although HBAO features occlusion of
a larger scale than modern SSAQ, it also does not darken certain areas enough.
In the second test scene it casts occlusion too far away, resulting in unpleasant
looking shadowing around the teapots. In practice HBAO can be artificially dark-
ened to create the desired appearance. Decreasing the radius is most likely also
both beneficial for performance and small scale ambient occlusion. GTAO looks
almost always pleasing, independent of scene complexity. The only problematic
situation observed while implementing the technique is thin geometry such as the
plant leaves on the wall in the first test scene. GTAO darkens these thin features
too much. The original authors of the technique suggest a heuristic to attenuate
horizons for thin features, reducing the darkening effect [JWPJ16a]. Apart from
this minor inaccuracy, quality might decrease around rapidly moving objects as
the temporal filter rejects previous frames due to invalidation. Fortunately, most
of the time this is not noticeable due to the rapid movement itself.

Measurements of the performance of all algorithms for both desktop and laptop
are shown in table and table for the first scene. Table and table
show the results for the second scene. The results show that the original SSAO al-
gorithm is independent of scene complexity and runs in a consistent short amount
of time. This can be explained with the kernel being applied purely in screen space.

4.3 Screen Space Ambient Occlusion 61

Fig. 4.4. SSAO (top left), SSAO (Hemisphere) (top right), HBAO (bottom left)
and GTAO (bottom right) applied to the first test scene.
)
W K { /

Fig. 4.5. SSAO (top left), SSAO (Hemisphere) (top right), HBAO (bottom left)
and GTAO (bottom right) applied to the second test scene.

4.3 Screen Space Ambient Occlusion 62

All other techniques scale their kernel to be constant in view space, making per-
formance dependent on the scene. Since the camera in the second scene is closer to
the geometry, the techniques were expected to exhibit worse performance then in
the first test scene. Surprisingly this was not the case. GTAO remains consistent,
modern SSAO performs much worse, while HBAO performs slightly better. GTAO
running in a similar time could be due to its heavy reliance on temporal filtering,
taking only few samples each frame and thus making it less memory dependent
then the other algorithms. Modern SSAO behaves as expected, leaving not much
to interpret. Contrary to modern SSAO, HBAO behaves unexpected, warranting
further investigation in the future.

Overall, all screen space ambient occlusion techniques are bandwidth limited. Using
one of the optimization techniques discussed in is likely to improve perfor-
mance considerably.

SSAO [SSAO (Hemisphere)| HBAO | GTAO
Ambient Occlusion Compute| 0.77788 0.42482 6.83595 | 2.01105
Spatial Denoise 0.287762 0.287831 0.288115|0.290643
Temporal Denoise n/a n/a n/a |0.131394
Total 1.06032 5.6725 7.08665 | 2.42091

Table 4.7. Screen space ambient occlusion timings of the first test scene on the
desktop test system. Time is measured in milliseconds.

SSAO [SSAO (Hemisphere)| HBAO | GTAO
Ambient Occlusion Compute| 2.18063 18.3955 18.571 | 6.53066
Spatial Denoise 0.490155 0.489214 0.488914/0.491941
Temporal Denoise n/a n/a n/a [0.238019
Total 2.65761 18.7552 18.9623 | 7.2247

Table 4.8. Screen space ambient occlusion timings of the first test scene on the
laptop test system. Time is measured in milliseconds.

SSAO [SSAO (Hemisphere)| HBAO | GTAO
Ambient Occlusion Compute|0.776153 9.71725 5.61758 | 2.05497
Spatial Denoise 0.287617 0.287814 0.287734|0.290846
Temporal Denoise n/a n/a n/a [0.131391
Total 1.05846 9.9764 5.8698 | 2.4649

Table 4.9. Screen space ambient occlusion timings of the second test scene on the
desktop test system. Time is measured in milliseconds.

Since screen space ambient occlusion techniques require many samples to produce
accurate results, the modern approach seems to be to employ temporal filtering

4.3 Screen Space Ambient Occlusion 63

SSAO [SSAO (Hemisphere)| HBAO | GTAO
Ambient Occlusion Compute| 2.07547 25.3305 11.7404 | 5.69297
Spatial Denoise 0.488034 0.48694 0.486443/0.490677
Temporal Denoise n/a n/a n/a [0.229724
Total 2.55017 25.7228 12.1319 | 6.38156

Table 4.10. Screen space ambient occlusion timings of the second test scene on
the laptop test system. Time is measured in milliseconds.

to spread the computation above multiple frames and exploit temporal coherency.
This is why GTAO is (except for the original SSAO) the fastest and most stable
algorithm. When choosing a screen space ambient occlusion solution, GTAO seems
to be the obvious choice. It is not only relatively efficient but also produces accurate
results. Generally, horizon-based approaches and temporal filtering seem to be the
most promising techniques. The downside to GTAO and other temporal SSAO
techniques is that the temporal filter is difficult to implement. Dynamic objects
leaving trails is a commonly found artifact.

5

Conclusion

5.1 Conclusion

Having implemented a variety of different motion blur, depth of field and screen
space ambient occlusion techniques, a comparison with respect to visual quality,
performance and ease of implementation was made. It was shown that modern
approaches to these problems eschew approximations and strive to come as close
as possible to the ground truth. In particular, motion blur and depth of field profit
from scatter-as-gather approaches correctly determining the scattering range and
accurately weighting the contribution of other pixels. Nonetheless, some older tech-
niques are still viable for weak hardware. Modern techniques do not simply profit
off of faster hardware. Instead, new strategies have been developed, exploiting spa-
tial and temporal coherence to improve performance. This has been demonstrated
with screen space ambient occlusion, where a novel technique (GTAO) produces
remarkably accurate results in a fraction of the time of previous established tech-
niques, like HBAO. In conclusion, both visual quality and speed of image-based
post-processing effects are improving rapidly.

5.2 Future Work

In future work, the possibility of exploiting temporal coherence in other effects
might prove important. In addition, reevaluating the feasibility of accurate solu-
tions for real-time rendering applications is an interesting topic for future research.

References

BA12.

BJ13.

BS08.

BS09.

BSDOS.

Dem07.

GMN13.

Gre03.

HamO8.

HL11.

JESG12.

Jim14.

Jim16.
JWPJ16a.

BavoiL, Louis and JOHAN ANDERSSON: Stable SSAO in Battlefield
3 with Selective Temporal Filtering, 2012.

BavoiL, Louis and JON JANSEN: Particle Shadows & Cache-FEfficient
Post-Processing, 2013.

Bavoir, Louts and MIGUEL SAINZ: Image-Space Horizon-Based Am-
bient Occlusion Siggraph 2008, 2008.

BavoiL, Louis and MIGUEL SAINZ: Multi-Layer Dual-Resolution
Screen-Space Ambient Occlusion, 2009.

Bavoir, Louls, MIGUEL SAINZ and ROUSLAN DIMITROV: Image-
Space Horizon-Based Ambient Occlusion, 2008.

DEMERS, JOE: Depth of Field: A Survey of Techniques. In FERNANDO,
RANDIMA (editor): Programming techniques, tips, and tricks for real-
time graphics, GPU gems. Addison-Wesley, Boston, Mass., 2007.
GUERTIN, JEAN-PHILIPPE, MORGAN MCGUIRE and DEREK
NOWROUZEZAHRATL: A Fast and Stable Feature-Aware Motion Blur Fil-
ter, 2013.

GREEN, SIMON: Stupid OpenGL Shader Tricks, 2003.

HamMoON, EARL, JR.: Practical Post-Process Depth of Field. In
NGUYEN, HUBERT (editor): GPU gems 3, Safari Books Online.
Addison-Wesley, Upper Saddle River, N.J, 2008.

Hoang, THAI-DUONG and Kok-LiM Low: Multi- Resolution Screen-
Space Ambient Occlusion, 2011.

JIMENEZ, JORGE, JOSE ECHEVARRIA, TIAGO SOUSA and DIEGO
GUTIERREZ: SMAA: Enhanced Subpizel Morphological Antialiasing.
Eurographics 2012, 2012.

JIMENEZ, JORGE: Next Generation Post Processing in Call of Duty
Advanced Warfare, 2014.

JIMENEZ, JORGE: Filmic SMAA, 2016.

JIMENEZ, JORGE, XIAN-CHUN WU, ANGELO PESCE and ADRIAN
JARABO: Practical Realtime Strategies for Accurate Indirect Occlusion,
2016.

References 66

JWPJ16b. JIMENEZ, JORGE, XIANCHUN WU, ANGELO PESCE and ADRIAN
JARABO: Practical Realtime Strategies for Accurate Indirect Occlusion
Siggraph 2016, 2016.

Kaj09. KAJALIN, VLADIMIR: Screen-Space Ambient Occlusion. In ENGEL,
WOLFGANG (editor): ShaderX 7, ShaderX series. Course Technology,
Boston, Mass., 2009.

Karl4. KARIS, BRIAN: High Quality Temporal Supersampling, 2014.

KSS11. KAsyAN, NIickoLAY, NICOLAS SCHULZ and TIAGO SOUSA: Secrets
of CryENGINE 3 Graphics Technology, 2011.

MD11. MITTRING, MARTIN and BRYAN DUDASH: The Technology Behind the
DirectX 11 Unreal Engine ”Samaritan” Demo, 2011.

MHBO12. McGUIRE, MORGAN, PADRAIC HENNESSY, MICHAEL BUKOWSKI
and BRIAN OSMAN: A Reconstruction Filter for Plausible Motion Blur,
2012.

MML12. MCcGUIRE, MORGAN, MICHAEL MARA and DAVID LUEBKE: Scalable
Ambient Obscurance. 2012.

MRD12. McINTOSH, LORNE, BERNHARD RIECKE and STEVE DIPAOLA: Effi-
ciently Simulating the Bokeh of Polygonal Apertures in a Post-Process
Depth of Field Shader, 2012.

MSW10. MATTAUSCH, OLIVER, DANIEL SCHERZER and MICHAEL WIMMER:
High—Quality Screen—Space Ambient Occlusion using Temporal Coher-
ence, 2010.

SCI7. SHIRLEY, PETER and KENNETH CHIU: A Low Distortion Map Be-
tween Disk and Square, 1997.

Sch04. SCHEUERMANN, THORSTEN: Advanced Depth of Field, 2004.

Sou08. SousA, T1AGO: Crysis Next Gen Effects, 2008.

Soul3. SousA, Tiaco: CryENGINE 3 Graphics Gems, 2013.

Timl3a. TIMONEN, VILLE: Line-Sweep Ambient Obscurance, 2013.

Tim13b. TIMONEN, VILLE: Screen-Space Far-Field Ambient Obscurance. Pro-
ceedings of the 5th High-Performance Graphics Conference, pages 33—
43, 2013.

Vall3. VALIENT, MICHAL: Killzone Shadow Fall Demo Post Mortem, 2013.

V1a08. VLACHOS, ALEX: Post Processing in The Orange Bozx, 2008.

A
Erklirung der Kandidatin / des Kandidaten

[0 Die Arbeit habe ich selbststandig verfasst und keine anderen als die angegebe-
nen Quellen- und Hilfsmittel verwendet.

[0 Die Arbeit wurde als Gruppenarbeit angefertigt. Meine eigene Leistung ist
Diesen Teil habe ich selbststandig verfasst und keine anderen als die angegebe-
nen Quellen und Hilfsmittel verwendet.

Namen der Mitverfasser: ...

Datum Unterschrift der Kandidatin / des Kandidaten

	Introduction
	Image-Based Post-Processing Effects
	Implementation Framework

	Related Work
	Motion Blur
	Depth of Field
	Screen Space Ambient Occlusion

	Method
	Motion Blur
	Physical Basis and Motivation
	Velocity Buffer Generation
	Simple Motion Blur
	Single-Direction Scatter-as-Gather
	Multi-Direction Scatter-as-Gather

	Depth of Field
	Physical Basis and Motivation
	Implementing a Virtual Camera
	Filter Kernels
	Simple Depth of Field
	Sprite-Based Depth of Field
	Scatter-as-Gather Depth of Field
	Depth of Field Implementation Considerations

	Screen Space Ambient Occlusion
	Physical Basis and Motivation
	Original Algorithm
	Hemisphere Kernel
	Horizon-Based Ambient Occlusion
	Ground-Truth Ambient Occlusion
	Screen Space Ambient Occlusion Implementation Considerations

	Measurement Method
	Motion Blur Test Setup
	Depth of Field Test Setup
	Screen Space Ambient Occlusion Test Setup

	Results and Discussion
	Motion Blur
	Depth of Field
	Screen Space Ambient Occlusion

	Conclusion
	Conclusion
	Future Work

	References
	Erklärung der Kandidatin / des Kandidaten

